期刊文献+

基于HSV彩色空间与直方图信息的植物叶脉FFCM算法提取 被引量:5

Plant leaf vein extraction algorithm based on HSV color space and FFCM using histogram information
下载PDF
导出
摘要 为满足植物分类和识别对植物叶片叶脉信息的需要,提出了基于HSV彩色空间与直方图信息FFCM聚类算法相结合的植物叶片叶脉提取方法。该算法可以简述为以下四个步骤:a)将植物叶片图像由RGB转换到HSV彩色空间;b)使用FFCM聚类算法实现叶片图像像素点的聚类,通过比较叶脉和叶肉像素值的均值大小对植物叶片进行颜色的分类,通过对自定义偏移量值的判定对图片进行受光度的分类;c)针对不同类别的植物叶片,分别进行去除部分叶肉的处理;d)使用FFCM算法再次聚类,在最终的聚类结果中提取叶脉像素点。实验结果表明,该方法既能有效处理和区分绿色和枯黄的叶片图像,也能很好地处理和区分受光均匀和受光不均匀的叶片图像,可以应用于植物的分类与识别。 In order to meet the needs of leaf vein information in the field of plant classification and identification,this paper proposed a method based on HSV color space and FFCM clustering algorithm using histogram information.The algorithm could be summarized into the following 4 steps.a)It converted the plant leaf image from RGB to HSV color space.b)It clustered the pixels of leaf image by FFCM,and classified the color of the plant leaves through comparing the mean of veins and mesophyll pixel values.Through the determination of custom offset values,leaves are classified by spectrophotometry of pictures.c)For different types of plant leaves,it removed part pixels of the mesophyll respectively.d)It clustered pixels by the FFCM clustering algorithm again,and extracted the vein pixels in clustering result.The experimental results show that this method can effectively deal with the images of leaves which is green or yellow,and a good result will be gained as used for images which the intensity of light falling on are not even.Therefore,this method may be a good choice applied to the classification and identification of plants.
作者 宣旭峰 王美丽 张建锋 Xuan Xufeng;Wang Meili;Zhang Jianfeng(College of Information Engineering,Northwest A&F University,Yangling Shaanxi 712100,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第9期2861-2864,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2013AA102304) 国家自然科学基金资助项目(61402374)
关键词 图像分割 叶脉提取 FFCM聚类 HSV彩色空间 image segmentation leaf vein extraction FFCM clustering HSV color space
  • 相关文献

参考文献4

二级参考文献50

  • 1谭立勋,刘缠牢,李春燕.实时图像处理中Sobel算子的改进[J].弹箭与制导学报,2006,26(S1):291-293. 被引量:9
  • 2傅弘,池哲儒,常杰,傅承新.基于人工神经网络的叶脉信息提取——植物活体机器识别研究Ⅰ[J].植物学通报,2004,21(4):429-436. 被引量:40
  • 3J C Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well - separated clusters[ J]. J. Cybemet, 1973, 3(3) : 32 -57.
  • 4J C Bezdek. Pattem Recognition with Fuzzy Objective Function Algorithms[ M ]. New York : Plenum Press, 1981.
  • 5A K JAN, N MURTYM, P J FLYNN. Data clustering A review [ J]. ACM computer Survey, 1999,31 (3) :264 - 323.
  • 6Young W on lin et. al. On the color image segmentation algorithm based on the thresh holding and the fuzzy cmeans techniques [ J ]. Pattern Recongniton, 1990, 23(6) :935 -952.
  • 7J KE. Fast Accurate Fuzzy Clustering through Reduced Precision [ C]. Master's Thesis University of South Florida, 1999.
  • 8Ming Chuan Hung Don_Lin Yang. An Efficient Fuzzy C - means Clustering Algorithm [ C ]. Proceedings of IEEE International Conference on Data Mining SanJose. 2001. 225 -232.
  • 9P R NIKHIL, J C BEZDEK. On cluster validity for the fuzzy C - means model[ J ]. IEEE Transactions on Fuzzy Systems, 1995,3 ( 3 ) : 370 - 379.
  • 10Y A Tolias, S M Panas. Image Segmentation by a Fuzzy Clustering Algorithm using Adaptive Spatially Constrained Membership Functions[J]. IEEE Transactions on Systems, Man and Cybemetics, 1998, 28(3) :359 -369.

共引文献94

同被引文献51

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部