期刊文献+

基于极线约束的ORB特征匹配算法 被引量:12

ORB feature matching based on epipolar constraint
下载PDF
导出
摘要 图像匹配是机器视觉领域的基础核心课题,针对当前ORB(oriented FAST and rotatedBRIEF)图像特征匹配算法虽然执行速度快、但是匹配质量不高的问题,提出一种通过极线约束来改进ORB匹配的算法。通过合理设计Hamming阈值大小来提高初始匹配点数量,采用RANSAC(random sample consensus)和8点改进法计算基本矩阵,应用极线约束剔除误匹配保留大量优质匹配点。仿真实验结果证明,算法改进后的优质匹配点数量可达原始算法的23倍,同时极大地提高了匹配点的质量,证明了算法的有效性。 Image matching is the core of the field of machine vision.Addressing the problem that the existing ORB feature matching algorithm is fast but of low matching quality,this paper proposed an improved version of the ORB algorithm for improving matching accuracy further by enforcing the epipolar constraint.By reasonably designing the Hamming threshold to get a large of original matching points and using RANSAC and 8-point improved algorithm to get fundamental matrix,the algorithm improved the number of matching points.Using epipolar constraint to eliminate the wrong match,it was able to retain a large number of high quality matching points.Experiment results show that the proposed algorithm can increase the number of matching points to 2~3 times of the original algorithm and greatly improve the quality of matching points,which proves the effectiveness of the algorithm.
作者 秦晓飞 皮军强 李峰 Qin Xiaofei;Pi Junqiang;Li Feng(School of Optical-Electrical&Computer Engineering,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第9期2865-2868,共4页 Application Research of Computers
基金 上海高校青年教师培训计划资助项目(ZZsl15008)
关键词 特征匹配 阈值 RANSAC 8点改进算法 基本矩阵 极线约束 feature matching threshold RANSAC 8-point improved algorithm fundamental matrix epipolar constraint
  • 相关文献

参考文献8

二级参考文献99

  • 1查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3徐伟,王朔中.基于视频图像Harris角点检测的车辆测速[J].中国图象图形学报,2006,11(11):1650-1652. 被引量:29
  • 4张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 5CHENG Y. Mean Shift, Mode Seeking, and Clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17(08): 790-799.
  • 6COMANICIUD, RAMESHV, MEERP. Kernel-based Object Trac-king[J]. IEEE Trans on Pattern Analalysis and Machine Intelli-gence, 2003,25(05): 564-577.
  • 7LIP H, ZHANG T W,MAB. Unscented Ka]man Filter for Visual Curve Tracking[J]. Image and Vision Computing, 2004,22(02):157-164.
  • 8YILZA. Object Tracking by Asyetric Kernel Mean Shift with Automatic Scale and Orientation Selection[C]. USA: IEEE, 2007: 1-6.
  • 9MORAVEC H P. Rover visual obstacle avoidance [ C ]. The seventh International Joint Conference on Artificial Intelligence, Vancouver, British Columbia, 1981 : 785 -790.
  • 10HARRIS C, STEPHENS M. A combined corner and edge detector[ C]. The 4th Alvey Vision Conference, Manches- ter, UK, 1988 : 147-151.

共引文献239

同被引文献73

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部