摘要
图像匹配是机器视觉领域的基础核心课题,针对当前ORB(oriented FAST and rotatedBRIEF)图像特征匹配算法虽然执行速度快、但是匹配质量不高的问题,提出一种通过极线约束来改进ORB匹配的算法。通过合理设计Hamming阈值大小来提高初始匹配点数量,采用RANSAC(random sample consensus)和8点改进法计算基本矩阵,应用极线约束剔除误匹配保留大量优质匹配点。仿真实验结果证明,算法改进后的优质匹配点数量可达原始算法的23倍,同时极大地提高了匹配点的质量,证明了算法的有效性。
Image matching is the core of the field of machine vision.Addressing the problem that the existing ORB feature matching algorithm is fast but of low matching quality,this paper proposed an improved version of the ORB algorithm for improving matching accuracy further by enforcing the epipolar constraint.By reasonably designing the Hamming threshold to get a large of original matching points and using RANSAC and 8-point improved algorithm to get fundamental matrix,the algorithm improved the number of matching points.Using epipolar constraint to eliminate the wrong match,it was able to retain a large number of high quality matching points.Experiment results show that the proposed algorithm can increase the number of matching points to 2~3 times of the original algorithm and greatly improve the quality of matching points,which proves the effectiveness of the algorithm.
作者
秦晓飞
皮军强
李峰
Qin Xiaofei;Pi Junqiang;Li Feng(School of Optical-Electrical&Computer Engineering,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第9期2865-2868,共4页
Application Research of Computers
基金
上海高校青年教师培训计划资助项目(ZZsl15008)
关键词
特征匹配
阈值
RANSAC
8点改进算法
基本矩阵
极线约束
feature matching
threshold
RANSAC
8-point improved algorithm
fundamental matrix
epipolar constraint