期刊文献+

基于独立成分的加权高阶脑网络的分类方法

Weighted High-order Brain Network Classification Method Based on Independent Component
下载PDF
导出
摘要 为了解决传统的磁共振成像数据分类方法正确率较低的问题,提出了一种基于独立成分分析的高阶功能连接网络,使用加权图的频繁子图挖掘和判别性特征选择进行分类研究的方法。该方法不需要依赖先验的脑图谱模板,充分考虑了扫描时间内的时变特性,且将频繁子图挖掘应用到了加权图上。同时为了更准确地找到具有判别性的子图特征,也提出了几种新的判别性特征选择方法。结果发现基于独立成分的加权高阶脑网络的静息态功能磁共振成像分类方法有效地提高了阿尔兹海默症诊断的正确率。 In order to solve the problem that the traditional fMRI classification method has a low accuracy,this paper proposes a method that uses frequent subgraph mining and discriminative feature selection of weighted graphs for classification research based on independent component analysis and high-order functional connection network.This method does not need to rely on a priori brain tap template,but fully considers the time-varying characteristics in the scan time and applies frequent subgraph mining to the weighted map.At the same time,in order to more accurately find discriminative subgraph features,this paper also proposes several new discriminative feature selection methods.The results show that resting-state functional magnetic resonance imaging classification based on independent component and weighted high-order brain networks effectively improved the diagnostic accuracy of Alzheimer's disease.
作者 杨艳丽 李瑶 谷金晔 李欣芸 陈俊杰 YANG Yanli;LI Yao;GU Jinye;LI Xinyun;CHEN Junjie(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China;College of Software,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《太原理工大学学报》 CAS 北大核心 2018年第5期745-750,共6页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61672374 61741212) 山西省科技厅应用基础研究项目青年面上项目(201601D021073 201701D221119) 山西省教育厅高等学校科技创新研究项目(2016139)
关键词 独立成分分析 高阶功能连接网络 加权图 频繁子图挖掘 判别性特征选择 independent component analysis high-order functional connectivity network weighted graphs frequent subgraph mining discriminative feature selection
  • 相关文献

参考文献1

二级参考文献13

  • 1Albert R, Barab'asi AL. Statistical mechanics of complex networks[M]. Rev Mod Phys,2002 :47-98.
  • 2He Y, Chen ZJ, Evans AC. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease[J]. Neurosei,2008,28(18) :4756-4766.
  • 3Butts CT. Social network analysis: a methodological introduction[J]. Asian J Soc Psychol,2008,11 : 13-41.
  • 4Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI singlesubject brain[J]. Neuroimage, 2002,15 (1) : 273-279.
  • 5Zalesky A, Fornito A, Harding IH, et al. Whole-brain anatomical networks: Does the choice of nodes matter[J]. Neuroimage,2010,50(3) ..970-983.
  • 6He Y, Chen Z J, Gong G L, et al. Neuronal networks in Alzheimer's disease[J]. Neuroscientist,2009,15(4) : 333-350.
  • 7Freeman L C. A set of measures of centrality based on betweenness. Sociometry,2009,40(1) :35-41.
  • 8Lohmann G, Marguliea DS, Horatmann A, et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain[J]. PLOS One, 2010,5 (4) : 10232.
  • 9Humphries M D, Gurney K, Prescott T J. The brainstem reticular formation is a small-world, not scale-free, network[J]. Proc Biol Sci, 2006,273 (1585) : 503-511.
  • 10Latora V, Marchiori M. Efficient behavior of small-world networks[J]. Phys Rev Lett,2001,87(19): 198701.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部