期刊文献+

双动态条件下多传感器融合的车辆检测方法研究 被引量:4

Research on Vehicle Detection Method of Multi-Sensor Under Dual Dynamic Condition
下载PDF
导出
摘要 运用双动态条件研究追尾事故中车辆防撞预警方法,提出一种基于毫米波雷达和PTZ摄像机相结合的前方车辆检测方法。解决摄像机、雷达、世界坐标系的变换关系,实现空间上的融合;采用线程同步方式实现时间上的融合。目标识别过程中,在图像中生成感兴趣区域,通过三阶Kalman滤波算法对当前周期内获取的初始目标信息进行预测,基于已训练好的级联分类器进行多尺度识别,得到感兴趣区域内的车辆。将单目测距获得的距离与毫米波雷达获得的实际距离进行比对,以验证上述算法的准确性,试验结果表明,测量距离与实际距离误差率为1.96%,可控制在用户可接受的区间内。 Presents a method of vehicle detection based on millimeter wave radar and PTZ camera,which is using double dynamic condition to study vehicle crash warning method.Solve the camera,radar,world coordinate system transformation relationship,to achieve spatial fusion;Using the thread synchronization way to achieve the time fusion.In the target recognition process,the region of interest is generated in the image,the third-order Kalman filter algorithm is used to predict the initial target information obtained in the current cycle.Comparing the predictive value of effective vehicle information of(n+1)th cycle with primary vehicle status to verify the effectiveness of the target.Based on the trained cascade classifier for multi-scale recognition to get the vehicle in the area of interest.The distance obtained from monocular ranging is compared with the actual distance obtained by millimeter-wave radar to verify the accuracy of the above algorithm.The experimental results show that the error ratio between measurement distance and actual distance is 1.96%,which can be controlled within the acceptable range of the user.
作者 刘志强 张中昀 倪捷 张腾 LIU Zhi-qiang;ZHANG Zhong-yun;NI Jie;ZHANG Teng(School of Automobile and Traffic Engineering,Jiangsu University,Jiangsu Zhenjiang 212013,China)
出处 《机械设计与制造》 北大核心 2018年第A02期6-10,共5页 Machinery Design & Manufacture
基金 国家自然基金(61403172) 道路交通安全公安部重点实验室(2016ZDSYSKFKT09)
关键词 双动态 PTZ摄像机 毫米波雷达 车辆检测 数据融合 Dual Dynamic PTZ Camera Millimeter Wave Radar Vehicle Detection Data Fusion
  • 相关文献

参考文献1

二级参考文献14

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking [J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 2Zhou S K, Chellappa R, Moghaddam B. Visual Tracking and Recognition Using Appearance-adaptive Models for Particle Filters[J]. IEEE Trans on Image Processing, 2004, 13(11) : 1491-1506.
  • 3Perez P, Vermaak J, Blake A. Data Fusion for Visual Tracking with Particles[J]. Proceedings of the IEEE, 2004, 92(3) : 495-513.
  • 4Valtteri T, Pietikainen M. Multi-object Tracking Using Color, Texture and Motion[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Chicago: IEEE, 2007: 1-7.
  • 5Birchfield S. Elliptical Head Tracking Using Intensity Gra-dients and Color Histograms [C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa: IEEE, 1998: 232-237.
  • 6Ido L, Michael L, Ehud R. Tracking by Affine Kernel Transformations Using Color and Boundary Cues[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(1): 164-171.
  • 7Maggio E, Smeraldi F, Cavallaro A. Adaptive Multi-feature Tracking in a Particle Filtering Framework[J]. IEEE Trans on Circuits and Systems for Video Technology, 2007, 17(10) : 1348-1359.
  • 8Wang X, Tang Z M. Modified Particle Filter-based Infrared Pedestrian Tracking[J]. Infrared Physics and Technology, 2010, 53(4): 280-287.
  • 9Oiala T, Pietikainen M, Maenpaa T. Multiresolution Grayscale and Rotation Invariant Texture Classification with Local Binary Patterns[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7) : 971-987.
  • 10Fisher R. Caviar Test Case Scenarios[DB/OL]. [2011-09-15]. http://homepaes, inf. ed. ac. uk/rbI/CAVIARDATA1/.

共引文献14

同被引文献22

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部