期刊文献+

重尾延迟索赔风险模型下破产概率的渐近性

The Asymptotics for the Ruin Probabilities of a Risk Model with Delayed Heavy-Tailed Claims
下载PDF
导出
摘要 本文对于一类带重尾延迟索赔的风险模型,给出了其无限时破产概率的渐近性和有限时破产概率的一致渐近性,并给出了数值分析的结果.理论分析和数值模拟的结果都表明,当初始资本和运营时间都较大时,赔付的延迟对破产概率的影响几乎可以忽略. In this paper,for a kind of risk models with heavy-tailed and delayed claims,we derivethe asymptotics of the in nite-time ruin probability and the uniform asymptotics of the nite-time ruinprobability.The numerical simulation results are also presented.The results of theoretical analysis andnumerical simulation show that the inuence of the delay for the claim payment is nearly negligible to theruin probability when the initial capital and running-time are all large.
作者 崔召磊 于长俊 CUI Zhaolei;YU Changjun(School of Mathematics and Statistics, Changshu Institute of Technology, Suzhou, 215500, China;School of Science, Nantong University, Nantong, 226019, China)
出处 《应用概率统计》 CSCD 北大核心 2018年第4期416-426,共11页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金数学天元基金项目(批准号:11426139 11226208)资助
关键词 重尾分布 有限时破产概率 无限时破产概率 数值模拟 heavy-tailed distribution nite-time ruin probability in nite-time ruin probability numer-ical simulation
  • 相关文献

参考文献3

二级参考文献39

  • 1刘艳,胡亦钧.Large deviations for heavy-tailed random sums of independent random variables with dominatedly varying tails[J].Science China Mathematics,2003,46(3):383-395. 被引量:11
  • 2Chen Y, Ng K W. The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims. Insurance Math Econom, 2007, 40:415-423.
  • 3Zhang Y, Shen X, Weng C. Approximation of the tail probability of randomly weighted sums and applications. Stochastic Process Appl, 2009, 119:655-675.
  • 4Geluk J, Tang Q. Asymptotic tail probabilities of sums of dependent subexponential random variables. J Theoret Probab, 2009, 22:871-882.
  • 5Cuo F, Wang D. Finite- and infinite-time ruin probabilities with general stochastic investment return processes and bivariate upper tail independent and heavy-tailed claims. Adv Appl Probab, 2013, 45:241-273.
  • 6Gerber H U. Ruin theory in the linear model. Insurance Math Econom, 1982, 1:213-217.
  • 7Bowers N L, Gerber H U, Hickman J C, et al. Actuarial Mathematics. 2ed ed. Schaumburg: The Society of Actuaries, 1997.
  • 8Mikosch T, Samorodnitsky G. The supremum of a negative drift random walk with dependent heavy-tailed steps. Ann Appl Probab, 2000, 10:1025-1064.
  • 9Yang H, Zhang L. Martingale method for ruin probability in an autoregressive model with constant interest rate. Probab Engrg Inform Sci, 2003, 17:183-198.
  • 10Tang Q, Yuan Z. A hybrid estimate for the finite-time ruin probability in a bivariate autoregressive risk model with application to portfolio optimization. N Am Actuar J, 2012, 16:378-397.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部