期刊文献+

自适应模板更新和目标重定位的相关滤波器跟踪 被引量:13

Correlation filter tracking based on adaptive learning rate and location refiner
下载PDF
导出
摘要 针对核相关滤波器在跟踪中因目标快速运动导致的目标易丢失和部分遮挡问题,本文在多特征尺度自适应核相关滤波器(Scale Adaptive with Multiple Features tracker,SAMF)基础上,提出一种融合自适应模板更新和预测目标位置重定位的核相关跟踪算法。采用联合目标移动速度和特征变化的模板更新机制增大对目标快速运动适应性,根据长时滤波器和短时滤波器协作跟踪提出目标位置修正和重定位模型提升跟踪器应对目标部分遮挡的能力。在OTB-2015视频序列集100组序列中与序列集提供的算法进行对比,本算法跟踪精度相比SAMF提升2%。在目标发生快速移动时本文算法具有更好的追踪目标能力,目标重定位也很好地解决了目标部分遮挡问题。 To overcome the problem of loss of target caused by fast motion and the issue of partial occlusion in the tracking of kernel correlation filters,this paper proposed a new kernel correlation tracking algorithm that combines adaptive template updating and the prediction of the relocation of a target,based on the scale adaptive with multiple features tracker(SAMF).A template updating mechanism that combines target velocity and feature changes was proposed to improve the adaptability to fast movement of the target.Based on cooperative tracking of long time and short time filters,a target position correction and relocation model was proposed to improve the ability of the tracker to cope with partial occlusion of the target.In 100 sequences of OTB-2015 video set,the proposed algorithm was compared with the algorithms based on sequence sets and the SAMF algorithm.The tracking accuracy of the proposed algorithm is 2%higher than that of the SAMF algorithm,and the success rate is increased by 1%.The proposed algorithm has better tracking ability for fast moving targets and the target relocation scheme effectively addresses the problem of partial occlusion of the target.
作者 刘教民 郭剑威 师硕 LIU Jiao-min;GUO Jian-wei;SHI Shuo(School of computer Science&Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2018年第8期2100-2111,共12页 Optics and Precision Engineering
基金 天津市科技计划资助项目(No.14RCGFGX00846 No.15ZCZDNC00130 No.17ZLZDZF00040) 河北省自然科学基金资助项目(No.F2015202239)
关键词 视觉跟踪 相关滤波器 自适应模板更新 目标重定位 vision tracking correlation filter adaptive learning rate location refiner
  • 相关文献

参考文献4

二级参考文献63

  • 1YILMAZ A, JAVED O, SHAH M. Object track-ing: a survey[J]. ACM Computin; Surveys , 2006 : 38(4):l-45.
  • 2JEPSON A, FLEET D, EL-MARAGHI T. Robust online appearance models for visual tracking [J].IEEE Transactions on Pattern Analysis and Ma chine Intelligence, 2003, 25(10): 1296-1311.
  • 3ADAM A, RIVLIN E and SHIMSHONI I. Robust fragments-based tracking using the integral histo- gram[J]. IE1ZE Conference on Computer Vision and Pattern Recognition, 2006 : 798-805.
  • 4ROSS D, LIMJ, LINR, etal.. Incrementa]learn- ing for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3) .. 125- 141.
  • 5BOLME D S, BEVERIDGE J R, DRAPER I3 A, et al.. Visual object tracking using adaptive correla tion filters [C]. 23rd IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR), 2010,13-18.
  • 6KALAI. Z, MIKOLAJCZYK K, MATAS J. Track- ing-learning-detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 43 (7):1409 1422.
  • 7HENRIQUES J F, CASEIRO R, MARTINS P, et al.. Exploiting the circulant structure of track ing-by-detection with kernels[C]. European Con- f erence on Computer Vision, 2012:702-715.
  • 8DANELLJAN M, KHAN F S, FELSBERG M. Adaptive color attributes {or real-time visual track- ing[C]. 27th IEEE Conference on Computer Vi- sion and Pattern Recognition ( CVPR) , 2014: 23- 28.
  • 9ZHANG K H, ZHANG L, YANG M H. Fast compressive tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10) ..2002-2015.
  • 10HENRIQUES J F, CASEIRO R, MARTINS P, et al.. High speed tracking with kernelized corre-lation filtersFJ. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3) : 583-596.

共引文献108

同被引文献64

引证文献13

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部