期刊文献+

基于模糊支持向量机的软件缺陷预测技术 被引量:8

Software defect prediction technology based on fuzzy support vector machine
下载PDF
导出
摘要 为克服软件缺陷预测中的类不平衡问题,提出机器学习模型GA-FSVM。去除软件数据集的冗余特征,使用模糊支持向量机作为分类器,针对软件缺陷预测问题提出相应的模糊隶属度函数,使其能适应数据集的类不平衡,应对数据集中的特异点,使用遗传算法进行参数调优,训练分类器。在NASA数据集上进行交叉验证的结果表明,和几种常见的算法相比,该方法能够提高有缺陷样本的F-measure值。 To solve the class imbalance problem in software defect prediction,a machine learning model GA-FSVM was proposed.The redundant features of software data sets were removed,and fuzzy support vector machine was used as classifier.In addition,the corresponding fuzzy membership functions for software defect prediction were proposed,which not only adapted to the data set of class imbalance,but also dealt with outliner in data set,and genetic algorithm was used for parameter tuning.The results of cross validation on NASA datasets show that the proposed method can improve the F-measure value of defective samples compared with several common algorithms.
作者 程元启 姚淑珍 谭火彬 李丹丹 CHENG Yuan-qi;YAO Shu-zhen;TAN Huo-bin;LI Dan-dan(School of Computer Science and Engineering,Beihang University,Beijing 100191,China;School of Software,Beihang University,Beijing 100191,China)
出处 《计算机工程与设计》 北大核心 2018年第9期2753-2757,共5页 Computer Engineering and Design
关键词 软件缺陷预测 模糊支持向量机 类不平衡问题 遗传算法 机器学习 software defect prediction fuzzy support vector machine class imbalance genetic algorithm machine learning
  • 相关文献

参考文献1

二级参考文献130

  • 1王青,伍书剑,李明树.软件缺陷预测技术.软件学报,2008,19(7):1565—1580.http://www.jos.org.cn/1000—9825/19/1565.htm.
  • 2Hall T, Beecham S, Bowes D, Gray D, Counsell S. A systematic literature review on fault prediction performance in software engineering. IEEE Trans. on Software Engineering, 2012,38(6): 1276-1304. [doi: 10.1109/TSE.2011.103 ].
  • 3Radjenovic D, Hericko M, Torkar R, Zivkovic A. Software fault prediction metrics: A systematic literature review. Information and Software Technology, 2013,55(8): 1397-1418. [doi: 10.1016/j.infsof.2013.02.009].
  • 4Akiyama E. An example of software system debugging. In: Proc. of the Int'1 Federation of Information Proc. Societies Congress. New York: Springer Science and Business Media, 1971. 353-359.
  • 5Halstead MH. Elements of Software Science (Operating and Programming Systems Series). New York: Elsevier Science Inc., 1977.
  • 6McCabe TJ. A complexity measure. IEEE Trans. on Software Engineering, 1976,2(4):308-320. [doi: 10.1109/TSE.1976.233837].
  • 7Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Trans. on Software Engineering, 1994,20(6): 476-493. [doi: 10.1109/32.295895].
  • 8Basili VR, Briand LC, Melo WL. A validation of object-oriented design metrics as quality indicators. IEEE Trans. on Software Engineering, 1996,22(10):751-761. [doi: 10.1109/32.544352].
  • 9Subramanyam R, Krishnan MS. Empirical analysis of CK metrics for object-oriented design complexity: Implications for software defects. IEEE Trans. on Software Engineering, 2003,29(4):297-310. [doi: 10.1109/TS E.2003.1191795].
  • 10Zhou YM, Xu BW, Leung H. On the ability of complexity metrics to predict fault-prone classes in object-oriented systems. Journal of Systems and Software, 2010,83(4):660-674. [doi: 10.1016/j.jss.2009.11.704].

共引文献122

同被引文献71

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部