期刊文献+

基于自相似性的多聚焦图像融合 被引量:2

Multi-focus image fusion based on self-similarity
下载PDF
导出
摘要 为更好保留源图像的信息,提出基于内容相关性的自相似区域划分技术,根据内容相关性的自相似性方法完成图像区域划分,利用图像间的共同相似区域完成图像匹配。实验中,经小波变换后的低频系数采用自相似性区域划分技术,获得区域划分标签图,采用加权融合方法完成融合;高频系数结合标签图,采用梯度能量绝对值最大值法完成融合。实验结果表明,在主客观评价上,该方法取得了较优的融合结果,符合人类的视觉感知,其性能优于经典的融合方法。 To better preserve the significant information of source images,the region segmentation technology based on content-correlated self-similarity algorithm was proposed.According to content relevance of image,the self-similarity algorithm was achieved to complete the region segmentation of image.The shared similar regions between images were used to match the images.After wavelet transforming,the self-similarity region segmentation technology was implemented in the low-frequency coefficients,the regional label map was obtained to match the source images.The low-frequency coefficients were fused through the weighted decision-making method.According to the label map of the adaptive region,the maximum value of gradient energy was used to fuse the high-frequency coefficients.Experimental results show that the proposed method achieves better results in the subjective and objective evaluation criteria,which is in accordance with the human visual perception.And its performance is superior to the classical fusion method.
作者 张丽霞 曾广平 卫津津 李立宗 ZHANG Li-xia;ZENG Guang-ping;WEI Jin-jin;LI Li-zong(School of Computer and Communication Engineering,University of Science and Technology Beijing, Beijing 100083,China;School of Information Technology Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《计算机工程与设计》 北大核心 2018年第9期2805-2810,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(11772228) 天津职业技术师范大学自然科学基金项目(KJ14-20)
关键词 自相似性 区域划分 自适应区域 多聚焦图像融合 小波变换 self-similarity region segmentation adaptive region multi-focus image fusion wavelet transform
  • 相关文献

参考文献4

二级参考文献40

  • 1胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 2Piella G. A general framework for rnultiresolution image fusion: from pixels to regions [J]. Information Fusion, 2003, 4 ( 4 ) : 259-280.
  • 3Rockinger O. Image sequence fusion using a shift-invariant wavelet transform [C]//Proceedings of the IEEE International Conference on Image Processing. Washington DC, USA: IEEE Computer Society, 1997: 288 -291.
  • 4Ray LA, Adhami R R. Dual tree discrete wavelet transform with application to image fusion [C]//Proceedings of the 38th Southeastern on System Theory. Huntsville, Albania: IEEE Computer Society, 2006: 430-433.
  • 5Ioannidou S, Karathanassi V. Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird image fusion [J]. IEEE Geoscience and Remote Sensing Letters , 2007,4(1): 166-170.
  • 6Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform [J]. Information Fusion, 2007, 8 (2): 143-156.
  • 7Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
  • 8Cunha L O Zhou J P. The nonsubsampled contourlet transform: Theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15 (10) : 3089-3101.
  • 9Yang B, Li S T, Sun F M. Image fusion using nonsubsampled contourlet transform [C]//Proceedings of the 4th International Conference on Image and Graphics. Chengdu, China: IEEE Computer Society, 2007: 719-724.
  • 10Yang B, Li S T. Multifocus image fusion and restoration with sparse representation [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 884-892.

共引文献139

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部