期刊文献+

基于多尺度卷积神经网络的立体匹配方法 被引量:4

Stereo matching method based on multi-scale CNN
下载PDF
导出
摘要 为充分利用图像的特征信息,提出一种改进的卷积神经网络(CNN)方法来匹配图像。网络训练阶段,在结构上改用多分支和不同尺寸卷积核,实现图像多尺度信息的提取与融合,使计算的图像块相似度更可靠。视差计算阶段,将网络模型用于度量图像对的匹配程度,利用该相似度初始化匹配代价,通过交叉代价聚合和优化策略获取粗糙的视差图,对视差图精细化处理。实验结果表明,该方法在Middlebury测试集上能获取更精确的视差。 To make full use of the featured information of image,an improved CNN method was proposed to match images.To realize the extraction and fusion of multi-scale information of image,during the network training,this model was modified in structure by using multiple branch and convolution kernel of various sizes,which made the obtained image block similarity more reliable.During the disparity calculation stage,the network model was used to measure the matching degree of image pairs,and this similarity was used to initialize the matching cost.The rough disparity map was obtained by adopting cross cost aggregation and optimization policies.Delicacy treatment was conducted to the disparity map.Experimental results show that the proposed method is beneficial to obtain more accurate disparity on Middlebury datasets.
作者 习路 陆济湘 涂婷 XI Lu;LU Ji-xiang;TU Ting(College of Science,Wuhan University of Technology,Wuhan 430070,China)
出处 《计算机工程与设计》 北大核心 2018年第9期2918-2922,共5页 Computer Engineering and Design
基金 国家自然科学基金面上基金项目(61573012)
关键词 立体匹配 卷积神经网络 多尺度 代价聚合 视差优化 stereo matching CNN multi-scale cost aggregation disparity refinement
  • 相关文献

参考文献4

二级参考文献96

  • 1沈晔湖,刘济林.利用立体图对的三维人脸模型重建算法[J].计算机辅助设计与图形学学报,2006,18(12):1904-1910. 被引量:7
  • 2GUAN Ye-peng. Automatic 3D face reconstruction based on single 2D image [ C ]//Proc of International Conference on Multimedia and Ubiquitous Engineering. 2007 : 1216-1219.
  • 3BEUMIER C, AEHEROY M. Automatic 3D face authentication[ J]. Imago and Vision Computing,2000,18(4) : 315-321.
  • 4BLANZ V, VETTER T. A morphable model for the synthesis of 3D faces[ C ]//Proc of the 26th Annual Conference on Computer Graphics and Interactive Techniques. 1999:187-194.
  • 5ZHANG Yu, PRAKASH E C, SUNG E. Hierarchical modeling of a personalized face for realistic expression animation [ C ]//Proc of the IEEE International Conference on Multimedia and Expo. 2002: 457- 460.
  • 6CHOWDHURY A R, CHELLAPPA R, VO T, et al. 3D face reconstruction from video using a generic model [ C ]//Proc of IEEE International Conference on Multimedia and Expo. 2002:449-452.
  • 7PARK U, JAIN A K. 3D face reconstruction from stereo video[ C]// Proc of the 3rd Canadian Conference on Computer and Robot Vision. 2006:41-42.
  • 8HOSSAIN M S, AKBAR M, STARKEY J D. Inexpensive construction of a 3D face model from stereo images[ C]//Proc of the 10th International Conference on Computer and Information Technology. 2007 : 1- 6.
  • 9ZHANG Zheng-you. A flexible new technique for camera calibration [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22 (11) : 1330-1334.
  • 10SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [ J ]. International Journal of Computer Vision ,2002,47( 1/2/3 ) : 7-42.

共引文献579

同被引文献17

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部