期刊文献+

基于多层非负局部Laplacian稀疏编码的图像分类 被引量:1

Image classification based on multi-layer non-negativity and locality Laplacian sparse coding
下载PDF
导出
摘要 针对单层稀疏编码结构对图像特征学习能力的局限性问题,提出了一个基于图像块稀疏表示的深层架构,即多层融合局部性和非负性的Laplacian稀疏编码算法(MLLSC)。对每个图像平均区域划分并进行尺度不变特征变换(SIFT)特征提取,在稀疏编码阶段,在Laplacian稀疏编码的优化函数中添加局部性和非负性,在第一层和第二层分别进行字典学习和稀疏编码,分别得到图像块级、图像级的稀疏表示,为了去除冗余特征,在进行第二层稀疏编码之前进行主成分分析(PCA)降维,最后采用多类线性支持向量机进行分类。在四个标准数据集上进行验证,实验结果表明,MLLSC方法具有高效的特征学习能力,能够捕获图像更深层次的特征信息,相对于单层结构算法准确率提高了3%~13%,相对于多层稀疏编码算法准确率提高了1%~2.3%;并对不同参数进行了对比分析,充分展现了其在图像分类中的有效性。 Focused on that limitation of single-layer structure on image feature learning ability,a deep architecture based on sparse representation of image blocks was proposed,namely Multi-layer incorporating Locality and non-negativity Laplacian Sparse Coding method(MLLSC).Each image was divided uniformly into blocks and SIFT(Scale-Invariant Feature Transform)feature extraction on each image block was performed.In the sparse coding stage,locality and non-negativity were added in the Laplacian sparse coding optimization function,dictionary learning and sparse coding were conducted at the first and second levels,respectively.To remove redundant features,Principal Component Analysis(PCA)dimensionality reduction was performed before the second layer of sparse coding.And finally,multi-class linear SVM(Support Vector Machine)was adopted for image classification.The experimental results on four standard datasets show that MLLSC has efficient feature expression ability,and it can capture deeper feature information of images.Compared with the single-layer algorithms,the accuracy of the proposed algorithm is improved by 3%to 13%;compared with the multi-layer sparse coding algorithms,the accuracy of the proposed algorithm is improved by 1%to 2.3%.The effects of different parameters were illustrated,which fully demonstrate the effectiveness of the proposed algorithm in image classification.
作者 万源 张景会 吴克风 孟晓静 WAN Yuan;ZHANG Jinghui;WU Kefeng;MENG Xiaojing(School of Science,Wuhan University of Technology,Wuhan Hubei 430070,China;Beijing Electro-Mechanical Engineering Institute,Beijing 100074,China)
出处 《计算机应用》 CSCD 北大核心 2018年第9期2489-2494,2499,共7页 journal of Computer Applications
关键词 多层架构 层级特征 局部性 非负性 Laplacian稀疏编码 主成分分析 multi-layer architecture hierarchical feature locality non-negativity Laplacian sparse coding Principal Component Analysis(PCA)
  • 相关文献

参考文献2

二级参考文献22

  • 1Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos. In: Proceedings of the 9th IEEE International Conference. Nice, France: IEEE, 2003. 1470-1477.
  • 2Csurka G, Dance C R, Fan L X, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proceed- ings of the 2004 ECCV International Workshop on Statisti- cal Learning in Computer Vision. Grenoble, France: ECCV, 2004. 1-22.
  • 3Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene cat- egories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2169-2178.
  • 4Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyra- mid matching using sparse coding for image classification. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1794-1801.
  • 5Wang J J, Yang J C, Yu K, Lv F J, Huang T S, Gong Y H. Locality-constrained linear coding for image classification. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3360-3367.
  • 6Yang J C, Wang J P, Huang T. Learning the sparse represen- tation for classification. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo (ICME). Barcelona, Spanish: IEEE, 2011. 1-6.
  • 7Yu K, Zhang T, Gong Y H. Nonlinear learning using lo- cal coordinate coding. In: Proceedings of the 2009 Ad- vances in Neural Information Processing Systems. Vancou- ver, Canada: NIPS, 2009. 2223-2231.
  • 8Hoyer P O. Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing. Falmouth, USA: IEEE, 2002. 557-565.
  • 9Zhang C J, Liu J, Tian Q, Xu C S, Lu H Q, Ma S D. hnage classification by non-negative sparse coding, low-rank and sparse decomposition. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 1673-1680.
  • 10Lin T H, Kung H T. Stable and efficient representation learning with non-negativity constraints. In: Proceedings of the 31st International Conference on Machine Learning. Beijing, China: JMLR W& CP, 2014. 1323-1331.

共引文献17

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部