期刊文献+

融合社交网络和兴趣的正则化矩阵分解推荐模型 被引量:7

Regularized matrix decomposition recommendation model integrating social networks and interest correlation
下载PDF
导出
摘要 针对目前用户偏好数据和社交关系数据十分稀疏的问题,以及用户可能更加喜欢朋友推荐的商品而不喜欢非朋友推荐的商品这样一个事实,提出了一种结合社交网络和用户间的兴趣偏好相似度的正则化矩阵分解推荐算法,首先针对社交关系数据稀疏问题,利用网络的全局和局部拓扑特性挖掘出用户间的信任和不信任关系矩阵,然后定义了一种改进的用户间的兴趣偏好相似度计算方法,最后在矩阵分解的过程中将信任矩阵、不信任矩阵以及兴趣相关性综合起来为用户作出推荐。实验表明该方法优于主要的正则化推荐方法,与基本的矩阵分解模型(Social MF)、SoRec、Trust MF、CTRPMF、Rec SSN算法相比,算法在均方根误差(RMSE)和平均绝对误差(MAE)上分别减小了1.1%~9.5%和2%~10.1%,取得了较好的推荐效果。 In view of the fact that users preferences and social interaction data are very sparse,and the fact that users may prefer products recommended by friends than recommended by foes,a regularized matrix decomposition recommendation algorithm integrating with social network and interest preference similarity was proposed.First of all,for the problem of sparse data of social relations.Global and local topological characteristics of the network were used to extract trust and distrust matrices between users respectively.Secondly,a method for calculating interest preference similarity between users was defined.Finally,in the process of matrix decomposition,the trust matrix,the distrust matrix,and the interest correlation were synthetically taken into consideration to make recommendations for the users.Experiments show that this method is superior to other regularization recommendation methods.Compared with the basic matrix decomposition model(SocialMF),SoRec,TrustMF,CTRPMF and RecSSN algorithm,the proposed algorithm reduces 1.1%to 9.5%and 2%to 10.1%respectively in the root mean square error(RMSE)and the mean absolute error(MAE),improved recommendations effectively.
作者 文凯 朱传亮 WEN Kai;ZHU Chuanliang(Research Center of New Telecommunication Technology Applications,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Information Technology Designing Company Limited,Chongqing 401121,China)
出处 《计算机应用》 CSCD 北大核心 2018年第9期2523-2528,共6页 journal of Computer Applications
关键词 数据稀疏 推荐系统 社交网络 偏好相似度 矩阵分解 正则化 data sparsity recommendation system social network preference similarity matrix factorization regularization
  • 相关文献

参考文献2

二级参考文献20

  • 1Balabanovi M, Shoham Y. Fab: content - based, coUabomfiverecommendation[ J]. Commtmications of the ACM, 1997, 40 (3) :66 - 72.
  • 2Bobadilla J, Ortega F, Hernando A, et al. A collaborative falter- ing approach to mitigate the new user cold start problem [ J ]. Knowledge- Based Systems,2012,26:225- 238.
  • 3Ma H,King I,Lyu M R. Effective missing data prediction for collaborative filtering[ A ]. Wessel K. Proceedings of the 30th annual international ACM SIGIR conference on Research anddevelopment in information retrieval [ C ]. New York: ACM, 2007.39 - 46.
  • 4Wang J,De Vries A P,Reinders M J T. Unifying user- based and item-based collaborative filtering approaches by similarity fusion[ A]. Efthimis N E. Proceedings of the 29th Annual Inter- national ACM SIGIR Conference on Research and Development in Information Relrieval [ C ]. New York: ACM, 2006. 501 - 508.
  • 5Ma H,Yang H, Lyu M R, et al. Sorec: social recommendation using probabilistic matrix factorization [ A ]. James G S. Pro- ceedings of the 17th ACM Conference on Information and Knowledge Management [ C ]. New York: ACM, 2008. 931 - 940.
  • 6Salakhutdinov R, Mnih A. Probabilisfic matrix factodzation[ J]. Advances inNneural Information Processing systems, 2008,20: 1257 - 1264.
  • 7Jamali M,Ester M.A malrix factorization technique with trust propagation for recommendation in social networks[ A]. Xavier A. Proceedings of theFouah ACM Conference on Recom- mender Systems[C]. New York: ACM, 2010. 135- 142.
  • 8Massa P, Avesani P. Trust Metrics in Recommender Systems [ M]. London: Springer, 2009: 259 - 285.
  • 9Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble [A]. James A. Proceedings of the 32ndlntemational ACM SIGIR Conference on Research and Development in Information Relrieval[ C ]. New York: ACM, 2009.203 - 210.
  • 10Kim Y, Song H S. Strategies for predicting local mast based on trust propagation in social networks [ J ]. Knowledge-Based Systems,2011,24(8) : 1360 - 1371.

共引文献38

同被引文献81

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部