期刊文献+

基于人工蜂群算法的轨道交通列车行车间隔优化 被引量:1

Train interval optimization of rail transit based on artificial bee colony algorithm
下载PDF
导出
摘要 轨道交通运营组织作为轨道交通运营企业管理的核心,在降低企业运营成本、提升服务水平和旅客出行效率方面起着非常重要的作用。提出一种基于人工蜂群(ABC)优化算法的列车行车间隔优化策略,在考虑运营企业和旅客各自利益的基础上,以列车发车间隔为决策变量,建立旅客平均候车时间最小和列车等候时间最大的双目标非线性规划模型。采用ABC算法对模型进行优化求解,结合京津城际铁路某日不同时段客流基础数据进行仿真,实例验证了所提算法和模型的有效性。 As the core of the operation and management of a rail transit enterprise,the rail transit operation organization plays a very important role in reducing the operation cost of the enterprise,improving the service level and the travel efficiency of passengers.A strategy based on Artificial Bee Colony(ABC)optimization algorithm was proposed to optimize the train traffic interval.Based on the consideration of the respective interests of operators and passengers,the train departure interval was taken as the decision variable to establish a bi-objective nonlinear programming model for the lowest average passenger waiting time and the largest train waiting time.Artificial Bee Colony(ABC)algorithm was used to optimize the model.The simulation results on Beijing-Tianjin inter-city passenger flow at different times of a day demonstrate the effectiveness of the proposed algorithms and models.
作者 方春林 刘晓娟 辛营营 罗欢 FANG Chunlin;LIU Xiaojuan;XIN Yingying;LUO Huan(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou Gansu 730070,China)
出处 《计算机应用》 CSCD 北大核心 2018年第9期2725-2729,2752,共6页 journal of Computer Applications
关键词 客流特性 人工蜂群算法 行车间隔 规划模型 优化 passenger flow characteristics Artificial Bee Colony(ABC)algorithm traffic interval planning model optimization
  • 相关文献

参考文献8

二级参考文献34

共引文献55

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部