期刊文献+

组学时代下机器学习方法在临床决策支持中的应用 被引量:12

Applications of machine learning in clinical decision support in the omic era
下载PDF
导出
摘要 随着组学技术的不断发展,对于不同层次和类型的生物数据的获取方法日益成熟。在疾病诊治过程中会产生大量数据,通过机器学习等人工智能方法解析复杂、多维、多尺度的疾病大数据,构建临床决策支持工具,辅助医生寻找快速且有效的疾病诊疗方案是非常必要的。在此过程中,机器学习等人工智能方法的选择显得尤为重要。基于此,本文首先从类型和算法角度对临床决策支持领域中常用的机器学习等方法进行简要综述,分别介绍了支持向量机、逻辑回归、聚类算法、Bagging、随机森林和深度学习,对机器学习等方法在临床决策支持中的应用做了相应总结和分类,并对它们的优势和不足分别进行讨论和阐述,为临床决策支持中机器学习等人工智能方法的选择提供有效参考。 With the development of the omic technologies,the acquisition approaches of various biological data on different levels and types are becoming more mature.As a large amount of data will be produced in the process of diagnosis and treatment of diseases,it is necessary to utilize the artificial intelligence such as machine learning to analyze complex,multi-dimensional and multi-scale data and to construct clinical decision support tools.It will provide a method to figure out rapid and effective programs in diagnosis and treatment.In this process,the choice of artificial intelligence seems to be particularly important,such as machine learning.The article reviews the type and algorithm of machine learning used in clinical decision support,such as support vector machines,logistic regression,clustering algorithms,Bagging,random forests and deep learning.The application of machine learning and other methods in clinical decision support has been summarized and classified.The advantages and disadvantages of machine learning are elaborated.It will provide a reference for the selection between machine learning and other artificial intelligence methods in clinical decision support.
作者 赵学彤 杨亚东 渠鸿竹 方向东 Xuetong Zhao;Yadong Yang;Hongzhu Qu;Xiangdong Fang(CAS Key Laboratory of Genome Sciences and Information,Beijing Institute of Genomics,Chinese Academy of Sciences,Beijing 100101,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《遗传》 CAS CSCD 北大核心 2018年第9期693-703,共11页 Hereditas(Beijing)
基金 国家“精准医学研究”重点研发计划项目(编号:2016YFC0901700,2016YFC0901603,2017YFC0907502,2017YFC0908402,2017YFC0907405)资助。
关键词 疾病 机器学习 人工智能 临床决策支持 diseases machine learning artificial intelligence clinical decision support
  • 相关文献

参考文献4

二级参考文献75

  • 1Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell, 2013, 155(1): 27-38.
  • 2Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer PA, Gao Y, Kim D, Boland J, Hicks B, Kim R, Chhangawala S, Jafari N, Raghavachari N, Gandara J, Garcia-Reyero N, Hendrick- son C, Roberson D, Rosenfeld JA, Smith T, Underwood JG, Wang M, Zumbo P, Baldwin DA, Grills GS, Mason CE. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol, 2014, 32(9): 915-925.
  • 3Rivera CM, Ren B. Mapping human epigenomes. Cell, 2013, 155(1): 39-55.
  • 4The International HapMap 3 Consortium. Integrating com- mon and rare genetic variation in diverse human popula- tions. Nature, 2010, 467(7311): 52-58.
  • 5Qu HZ, Fang XD. A brief review on the Human Encyclo- pedia of DNA Elements (ENCODE) project. Genomics Proteomics Bioinformatics, 2013, 11(3): 135-141.
  • 6The 10000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature, 2012, 491(7422): 56-65.
  • 7Zhu XF, He FH, Zeng HM, Ling SP, Chen AL, Wang YQ, Yan XM, Wei W, Pang YK, Cheng H, Hua CL, Zhang Y, Yang XJ, Lu X, Cao LH, Hao LT, Dong LL, Zou W, Wu J, Li X, Zheng S, Yan J, Zhou J, Zhang LX, Mi SL, Wang XJ, Zhang L, Zou Y, Chen YM, Geng Z, Wang JM, Zhou JF, Liu X, Wang JX, Yuan WP, Huang G, Cheng T, Wang QF. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet, 2014, 46(3): 287-293.
  • 8Zhang WJ, Gao Y J, Li PX, Shi ZB, Guo T, Li F, Han XK, Feng Y, Zheng C, Wang ZY, Li FM, Chen HQ, Zhou ZC, Zhang L, Ji HB. VGLL4 functions as a new tumor sup- pressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res, 2014, 24(3): 331-343.
  • 9Muers M. RNA: Genome-wide views of long non-coding RNAs. NatRev Genet, 2011, 12(11): 742.
  • 10Zhang XO, Wang HB, Zhang Y, Lu XH, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1): 134-147.

共引文献30

同被引文献94

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部