期刊文献+

p值统计量建模独立性的高光谱波段选择方法 被引量:2

Hyperspectral images band selection algorithm through p-value statistic modeling independence
下载PDF
导出
摘要 近年来,p值统计量的使用规范引起了统计学界的极大关注和集中讨论,广泛认为,p值统计量可表达观测数据与备择假设之间的不相容程度。为探究高光谱图像波段的相关分析p值与其样本独立性的联系,进行了演绎推理和实例验证,研究表明,与相关系数r统计量相比,相关分析p统计量可直接表达波段样本的独立性,且p值矩阵具有高水平的自稀疏性,便于建模和计算。进而,对相关性p值矩阵进行直方图频数统计,提出一种基于p值的高光谱自适应波段选择方法 p SMBS。选取典型数据进行了监督分类实验,结果表明,在Kappa系数、总体精度(OA)和平均精度(AA)上,p SMBS均优于同类方法 ABS、Inf FS和LSFS。说明p SMBS在高光谱波段选择方面具有突出的有效性,这也佐证了相关性p值对波段独立性的强表征能力。 The usage specifications of p-value statistic were stimulated by highly visible discussions in the field of Statistics over the last few years.It is generally considered that a p-value can indicate how incompatible sample data are with the alternative hypothesis model.To explore the connection between the p-value of correlation analysis and spectral independence,the deductive reasoning and example verification were carried out.Compared with correlation coefficient(r-value statistic),results show that the band independence can be directly expressed by p-value statistic of correlation analysis.And p-value matrix has a kind of high-level self-sparsity,which can be used to model easily.And then an unsupervised band selection method(p-value sparsity matrix band selection,pSMBS)through p-value statistic modeling independence was proposed,based on the histogram frequency statistics of p-value matrix.Using two typical hyperspectral images(HSI)data,the experiments of supervised classification were carried out.The results indicate that,on Kappa coefficient,overall accuracy(OA)and average accuracy(AA),pSMBS is superior to three kinds of methods,adaptive band selection(ABS),infinite feature selection(InfFS)and Laplacian score feature selection(LSFS).Therefore,the effectiveness and the practicability of pSMBS were verified on HSI band selection,and the characterization ability of p-value of correlation analysis on expressing band independence was evidenced.
作者 张爱武 康孝岩 Zhang Aiwu;Kang Xiaoyan(Key Laboratory of 3D Information Acquisition and Application,Ministry of Education,Capital Normal University,Beijing 100048,China;Engineering Research Center of Spatial Information Technology,Ministry of Education,Capital Normal University,Beijing 100048,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第9期390-398,共9页 Infrared and Laser Engineering
基金 国家自然科学基金面上项目(41571369) 国家重点研发计划项目(2016YFB0502500) 青海省科技计划项目(2016-NK-138)
关键词 p值统计量 波段独立性 自稀疏性 非监督波段选择 高光谱 p-value statistic band independence self-sparsity unsupervised band selection hyperspectral image
  • 相关文献

参考文献5

二级参考文献39

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 3焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 4周扬,王健.视皮层分区及其fMRI研究进展[J].现代生物医学进展,2006,6(9):79-81. 被引量:9
  • 5Green Robert O, Pavri Betina E, Chrien Thomas G. On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6): 1194 - 1203.
  • 6Resmini Ronald G. The categorization of hyperspectral information (HSI) based on the distribution of spectra in hyperspace [ A]. In:Proceedings of SPIE-The International Society for Optical Engineering [ C ], San Diego, California, USA, 2003,5093:581 - 590.
  • 7Zhang Jun-ping, Zhang Ye, Zou Bin, et al. Fusion classification of hyperspectral image based on adaptive subspace decomposition [ A ].In: International Conference on Image Processing [ C ], Vancouver,BC, Canada, 2000,3: 472 - 475.
  • 8Petrie G M, Heasler P G, Warner T. Optimal band selection strategies for hyperspectral data sets [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ]. Seattle, USA,1998,3:1582 - 1584.
  • 9Millette T L. An expert system approach to spectral band selection for remote sensing analysis [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ] , Maryland, USA, 1990: 1285 -1288.
  • 10Chavez P S, Berlin G L, Sowers L B. Statistical method for selecting landsat MSS ratios [ J]. Journal of applied photographic engineering,1982,1(8) :23 -30.

共引文献120

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部