摘要
针对现有车联网簇头节点选择方法不足的问题,提出了一种基于三角模糊数的车联网簇头节点选择方法,依赖邻近车辆相对速度和相对距离完成簇头的选择。构建了一种典型车联网应用场景,提出了基于三角模糊数和学习机制的车辆加速度预测方法,基于定义的加权稳定因子,设计了车联网簇头节点选择机制。基于i TETRIS构建了车联网仿真平台进行测试分析,结果表明,与CMCP方法和APROVE方法相比,提出的簇头节点选择方法有效性较高。
The existing Internet of Vehicles(IoVs)cluster head doesn't have sufficient selection methods,to solve this problem,this paper proposed a new cluster head selection method for IoVs based on triangular fuzzy,and made cluster head selection depending on both the relative velocity and the relative distance of neighboring vehicles on the road.Firstly,a typical application scenario of IoVs was constructed.Secondly,a vehicle acceleration forecasting method was proposed based on triangular fuzzy and learning mechanism.Then,a cluster head selection mechanism was designed based on the defined weighted stability factor.Finally,the simulation platform of IoVs was constructed based on iTETRIS.The results show that the proposed method is more effective than the CMCP and APROVE
作者
刘蕴
曹军芳
王凤琦
Liu Yun;Cao Junfang;Wang Fengqi(Zhoukou Vocational and Technical College,Zhoukou 46600;Xuchang Vocational Technical College,Xuchang 461000;;Chang’an University,Xi’an 710064)
出处
《汽车技术》
CSCD
北大核心
2018年第9期31-36,共6页
Automobile Technology
关键词
车联网
簇头选择
三角模糊数
学习机制
相对距离
相对速度
Internet of vehicles,Cluster head selection,Triangular fuzzy,Learning mechanism,Relative distance,Relative velocity