期刊文献+

利用示教学习的移动机械臂轨迹避障算法 被引量:2

Learning from demonstration based obstacle avoidance algorithm to plan the trajectory of a mobile manipulator
下载PDF
导出
摘要 为了提高服务机器人的环境适应性和减轻操作者的控制负担,本文提出了一种利用示教学习的轨迹修正算法。利用动态动作基元模型,生成与示教轨迹形状相似的新轨迹。进而提出改进的距离加权k-近邻算法,实现移动机械臂末端轨迹形状的局部修正。本文设计了避免相邻有效训练数据丢失的在线更新方法,并在人机交互系统上进行避障和实时性测试。实验结果证明了本文提出的轨迹避障算法具有对新任务的适应能力,不同场景下的避障决策能力和在线修正能力,从而保证友好、流畅的人机交互过程。 To improve the environmental adaptability of service robots and alleviate user loads,a trajectory amendment algorithm utilizing learning from demonstration is proposed in this paper.First,a new trajectory with a shape similar to that previously demonstrated was generated by utilizing the dynamic movement primitives model,after which an improved distance-weighted k-nearest neighbor algorithm was developed to realize local modification for the trajectory shape at the end of the mobile manipulator.An online updating method was designed to avoid loss of adjacent effective training data.Obstacle avoidance experiments and real-time tests were then implemented in the human-robot interaction system.The experimental results showed the adaptability of the proposed obstacle avoidance algorithm to the new task,the obstacle avoidance decision ability and the online modification ability,to ensure friendly and smooth human-robot interactions.
作者 刘维惠 陈殿生 张立志 LIU Weihui;CHEN Diansheng;ZHANG Lizhi(School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第9期1546-1553,共8页 Journal of Harbin Engineering University
基金 北京市科技计划重大项目(D141100003614002)
关键词 服务机器人 示教学习 人机交互 移动机械臂 轨迹避障 在线修正 K-近邻算法 动态动作基元 service robot learning from demonstration human-robot interaction mobile manipulator obstacle avoidance for trajectory online adjusting k-nearest neighbor algorithm dynamic movement primitives
  • 相关文献

参考文献1

二级参考文献20

  • 1Dragan A D, Srinivasa S S. Familiarization to robot motion[C]// ACM/IEEE International Conference on Human-Robot Interac- tion. Piscataway, USA: IEEE, 2014: 366-373.
  • 2Billard A, Grollman D. Robot learning by demonstration [D- B/OL]. (2013-12-10) [2016-03-09]. http://www.scholarpedia. org/article/Robot _learning_by_demonstration.
  • 3Akgun B, Cakmak M, Yoo J W, et al. Trajectories and keyframes for kinesthetic teaching: A human-robot interaction perspec- tive[C]//ACM/1EEE International Conference on Human-Robot Interaction. Piscataway, USA: IEEE, 2012: 391-398.
  • 4Kuklinski K, Fischer K, Marhenke I, et al. Teleoperation for learning by demonstration: Data glove versus object manipu- lation for intuitive robot control[C]//6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops. Piscataway, USA: IEEE, 2014: 346-351.
  • 5Albrecht S, Ramffez-Amaro K, Weikersdorfer D, et al. Imitat- ing human reaching motions using physically inspired optimiza- tion principles[C]//IEEE/RAS International Conference on Hu- manoid Robots. Piscataway, USA: IEEE, 2011 : 602-607.
  • 6Mandery C, Terlemez O, Do M, et al. The KIT whole-body hu- man motion databaselC]//17th International Conference on Ad- vanced Robotics. Piscataway, USA: IEEE, 2015: 329-336.
  • 7Kirstein F, Fischer K, Solvason D. Human embodiment cre- ates problems for robot learning by demonstration using a con- trol paneI[C]//ACM/IEEE International Conference on Human- Robot Interaction. Piscataway, USA: IEEE, 2014: 212-213.
  • 8Schaal S. Dynamic movement primitives: A framework for mo- tor control in humans and humanoid robotics[M]. Berlin, Ger- many: Springer-Verlag, 2006.
  • 9Ilari J, Torras C. 2D path planning: A configuration space heuristic approach[J]. International Journal of Robotics Re- search, 1990, 9(1): 75-91.
  • 10Rusu R B, Sucan I A, Gerkey B, et al. Real-time perception- guided motion planning for a personal robot[C]//IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems. Pis- cataway, USA: IEEE, 2009: 4245-4252.

共引文献12

同被引文献9

引证文献2

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部