期刊文献+

谱HS投影算法求解非线性单调方程组 被引量:7

Spectral HS projection algorithm for solving nonlinear monotone equations
下载PDF
导出
摘要 借助谱梯度法和HS共轭梯度法的结构,建立一种求解非线性单调方程组问题的谱HS投影算法.该算法继承了谱梯度法和共辄梯度法储存量小和计算简单的特征,且不需要任何导数信息,因此它适应于求解大规模非光滑的非线性单调方程组问题.在适当的条件下,证明了该算法的收敛性,并通过数值实验表明了该算法的有效性. In this paper,based on the structures of spectral gradient method and HS conjugate gradient method,we propose a spectral HS projection algorithm for solving nonlinear monotone equations.The proposed algorithm inherits some advantages of spectral gradient method and conjugate gradient method such as low memory cost and simple calculation.Moreover,it does not need any derivative information,since it is very suitable to solve non-smoothly nonlinear monotone equations.Under some appropriate conditions,we prove the convergence of the proposed method,and show the efficiency of the proposed method by some numerical experiments.
作者 陈香萍 CHEN Xiangping(City College of Science and Technology,Chongqing University,Chongqing 402167,China)
出处 《运筹学学报》 CSCD 北大核心 2018年第3期15-27,共13页 Operations Research Transactions
基金 重庆市高等教育研究项目(No.153206)
关键词 非线性单调方程组 共轭梯度法 谱梯度法 投影算法 收敛性 nonlinear monotone equations conjugate gradient method spectral gradient method projection algorithm convergence
  • 相关文献

参考文献1

二级参考文献13

  • 1Meintjes K and Morgan A P. A methodology for solving chemical equilibrium systems[J]. Applied Mathematics and Computation, 1987, 22: 333-361.
  • 2Dirkse S P and Ferris M C. MCPLIB: A collection of nonlinear mixed complementarity problem- s[J]. Optimization Methods and Software, 1995, 5: 319-345.
  • 3Dennis J E and More J J. A characterization of superlinear convergence and its application to quasi-Newton methods[J]. Mathematics of Computation, 1974, 28: 549-560.
  • 4Zhao Y B and Li D. Monotonicity of fixed point and normal mapping associated with variational inequality and its application[J]. SIAM Journal on Optimization, 2001, 4: 962-973.
  • 5Barizilai J M and Borwein M. Two point step size gradient methods[J]. IMA Journal on Numerical Analysis, 1988, 8: 141-148.
  • 6La Cruz W and Raydan M. Nonmonotone spectral methods for large-scale nonlinear systems[J]. Optimization Methods and Software, 2003, 18: 583-599.
  • 7La Cruz W, Martinez J M and Raydan M. Spectral residual method without gradient information for solving large-scale nonlinear systems of equations[J]. Mathematics of Computation, 2006, 75: 1429-1448.
  • 8Solodov M V and Svaiter B F. A globally convergent inexact Newton method for systems of mono- tone equations, In: Fukushima, M., Qi,L.(eds.)R eformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp.355-369.
  • 9Kluwer Academic, 1998. Zhang L and Zhou W. Spectral gradient projection method for solving nonlinear monotone equa- tions[J]. Journal of Computation and Applied Mathematics, 2006, 196: 478-484.
  • 10Cheng W Y. A PRP type method for systems of monotone equations[J]. Mathematical and Com- puter Modelling, 2009, 50: 15-20.

共引文献3

同被引文献72

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部