期刊文献+

简化全局GMRES算法的扩张及收缩

Global simpler GMRES with augmentation and deflation
下载PDF
导出
摘要 简化的全局GMRES算法作为求解多右端项线性方程组的方法之一,与标准的全局GMRES算法相比,需要较少的计算量,但对应的重启动方法由于矩阵Krylov子空间维数的限制,收敛会较慢.基于调和Ritz矩阵,提出了简化全局GMRES的扩张及收缩算法.数值实验结果表明,新提出的扩张及收缩算法比标准的全局GMRES算法更为快速高效. The global simpler GMRES method is one of the feasible methods for nonsymmetric systems with multiple right-hand sides.Compared with the standard global GMRES method,it requires less computational work.However,the restarted version sometimes converges more slowly due to the limited dimension of the matrix Krylov subspace.In this paper,based on the harmonic Ritz matrices,we present the restarted global simpler GMRES with augmentation and deflation techniques.According to the numerical tests,the augmented and deflated versions have better numerical stability and efficieny.
作者 贾子薇 刘巧华 JIA Ziwei;LIU Qiaohua(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2018年第3期486-496,共11页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11001167)
关键词 矩阵方程 简化全局GMRES 矩阵Krylov子空间 调和Ritz矩阵 重启动 matrix equations global simpler GMRES matrix Krylov subspace harmonic Ritz matrices restarting
  • 相关文献

参考文献1

二级参考文献13

  • 1Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsym- metric linear systems [J]. SIAM J Sci Stat Comput, 1986, 7: 856-869.
  • 2Walker H F, Zhou L. A simpler GMRES [J]. Numerical Linear Algebra with Applications, 1994, 1(6): 571-581.
  • 3Jiranek P, Rozloznik M, Gutknecht M H. How to make simpler GMRES and GCR more stable [J]. SIAM J Matrix Anal Appl, 2008, 30(4): 1483-1499.
  • 4Liu H. Simpler hybrid GMRES [J]. Journal of Information and Computing Science, 2006, 1(2): 110-114.
  • 5Chen G, Jia Z X. Theoretical and numerical comparisons of GMRES and WZ-GMRES [J]. Computers and Mathematics with Applications, 2004, 47(8-9): 1335-1350.
  • 6Liu H, Zhong B. Simpler block GMRES for nonsymmetric systems with multiple right-hand sides [J]. Electronic Transactions on Numerical Analysis, 2008, 30: 1-9.
  • 7VITAL B. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur [D]. Rennes, France: Universit'e de Rennes I, 1990.
  • 8Simoncini V, Gallopoulos E. Convergence properties of block GMRES and matrix polynomials [J]. Linear Algebra and Its Applications, 1996, 247(6): 97-119.
  • 9Imakura A, Du L, Tadano H. A weighted block GMRES method for solving linear systems with multiple right-hand sides [J]. Japan Society for Industrial and Applied Mathematics, 2013, 5: 65-68.
  • 10Simoncini V, Gallopoulos E. A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides [J]. Journal of Computational and Applied Mathematics, 1996, 66: 457-469.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部