期刊文献+

带阻尼项的径向相对论Euler方程组正则解的破裂 被引量:1

Blowup of regular solutions for radial relativistic Euler equations with damping
下载PDF
导出
摘要 研究了带阻尼项的径向相对论Euler方程组的奇性形成问题.在初始值一定的假设下,得到系统正则解在有限时间内破裂. In this paper,we mainly consider the blowup of the regular solutions of the radial relativistic Euler equations with damping.Under the appropriate assumptions on the initial data,we obtain the singularity formation for the regular solutions to the Cauchy problem of the radial relativistic Euler equations with damping.
作者 刘见礼 栾丽萍 房尧立 LIU Jianli;LUAN Liping;FANG Yaoli(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2018年第3期608-618,共11页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11401367) 教育部博士点基金资助项目(20133108120002)
关键词 径向相对论Euler方程组 阻尼项 正则解 破裂 radial relativistic Euler equations damping regular solutions blowup
  • 相关文献

参考文献3

二级参考文献32

  • 1ZHU XUSHENG,WANG WEIKE.THE REGULAR SOLUTIONS OF THE ISENTROPIC EULER EQUATIONS WITH DEGENERATE LINEAR DAMPING[J].Chinese Annals of Mathematics,Series B,2005,26(4):583-598. 被引量:18
  • 2Anile A M, Choquet-Bruhat Y. Relativistic Fluid Dynamics. Berlin, Heidelverg: Springer-Verlag, 1989.
  • 3Bang S. Interaction of four rarefection waves of the pressure gradient system. J Differ Equ, 2009, 246: 453-481.
  • 4Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York: Interscience, 1948.
  • 5Chang T, Hsiao L. The Riemann problem and interaction of waves in gas dynamics//Pitman Monographs and Surveys in Pure and Applied Mathematics, 41. Harlow: Longman Scientific Technical, 1989.
  • 6Chang T, Chen G Q, Yang S L. On the 2-D Riemann problem for the compressible Euler equations, I, Interaction of shock waves and rarefaction waves. Disc Cont Dyn Syst, 1995, 1: 555-584.
  • 7Chang T, Chen G Q, Yang S L. On the 2-D Riemann problem for the compressible Euler equations, II, Interaction of contact discontinuities. Disc Cont Dyn Syst, 2000, 6: 419-430.
  • 8Chen X, Zheng Y X. The direct approach to the interaction of rarefaction waves of the two-dimensional Euler equations. Indian J Math, 2010, 59: 231-256.
  • 9Chiu H H. Relativistic gas dynamics. Phys Fluids, 1973, 16: 825-881.
  • 10Dafermos C. Hyperbolic Conservation Laws in Continuum Physics. Heidelberg: Springer, 2000.

共引文献24

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部