期刊文献+

随机系数Burgers方程的广义多项式混沌-谱方法 被引量:3

Generalized polynomial chaos and spectral method for Burgers equation with a random coefficient
下载PDF
导出
摘要 采用广义多项式混沌-谱方法求解系数随机的Burgers方程.首先,在随机方向上对随机过程和随机系数进行多项式混沌展开,采用随机Galerkin方法将随机Burgers方程化为确定性的非线性微分方程组;然后,对该方程组,在空间方向上采用Legendre-Galerkin-Chebyshev-collocation方法,对非线性项采用Chebyshev-Gauss-Lobatto点上的Legendre插值,在时间方向上采用二阶Crank-Nicolson/leapfrog格式,以保证时间方向达到二阶精度.最后,分析了该方法求解系数随机的Burgers方程的均方收敛性,并给出了数值结果. In this paper,we solve the Burgers equation with a random coefficient by the generalized polynomial chaos expansion and spectral method.Firstly,in the random direction,the stochastic process and the random coefficient can be expanded by the generalized polynomial chaos.Then,the stochastic equation can be transformed to a system of nonlinear equations by the stochastic Legendre-Galerkin method.The Legendre-Galerkin-Chebyshev-collocation scheme is used in the direction of space,that is,the nonlinear term is interpolated through the Chebyshev-Gauss-Lobatto points.In the direction of time,to ensure the second order accuracy,the second-order Crank-Nicolson/leapfrog scheme is used.Finally,the numerical results are given,and we analyse the mean square convergence of this method.
作者 董帅 吴华 DONG Shuai;WU Hua(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2018年第3期675-685,共11页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11571225)
关键词 随机系数 广义多项式混沌 随机Legendre-Galerkin方法 Legendre-Galerkin-Chebyshev-collocation方法 均方收敛性 random coefficient generalized polynomial chaos stochastic Legen-dre-Galerkin method Legendre-Galerkin-Chebyshev-collocation method mean square convergence
  • 相关文献

参考文献1

二级参考文献10

  • 1康顺.计算域对CFD模拟结果的影响[J].工程热物理学报,2005,26(z1):57-60. 被引量:20
  • 2康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J].工程热物理学报,2005,26(3):400-404. 被引量:37
  • 3EU Project (Sixth Framework), Non-Deterministic Simulation for CFD-Based Design Methodologies (NODESIMCFD)[EB/OL]. [2009-03-11]. http://www.nodesim.eu/.
  • 4Zang T A, Hemsch M J, Hilburger M W, et al. Needs and Opportunities for Uncertainty Based Multidisciplinary Design Methods for Aerospace Vehicles [R]. Hampton, Va.: NASA Langley Res. Cent., 2002:1-53.
  • 5Najm H N. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics [J]. Annu. Rev. Fluid Mech., 2009, 41:35-52.
  • 6Wiener S. The Homogeneous Chaos [J]. Am. J. Math., 1938, 60:897-936.
  • 7Le Maitre O, Knio O, Najm H N, et al. A Stochastic Projection Method for Fluid Flow I. Basic Formulation [J]. J. Comput. Phys., 2001, 173:481-511.
  • 8Xiu D, Karniadakis G E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations [J]. SIAM Journal of Sci. Comput., 2002, 24:619-644.
  • 9Xiu D, Karniadakis G E. Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos [J]. J. Comput. Phys., 2003, 187:137-167.
  • 10Lacro C, Smirnov S. Uncertainty Propagation in the Solution of Compressible Navier-Stokes Equations Using Polynomial Chaos Decomposition [C]//NATO AVT Symposium, Athens, 2007.

共引文献16

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部