期刊文献+

平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性 被引量:6

Characteristic of latent heat thermal energy storage strengthened by flat micro heat pipe array-copper foam composite structure
下载PDF
导出
摘要 相变蓄热技术是节能减排的一个重要手段,在太阳能利用、余热回收和电力削峰填谷等领域发挥重要的作用。设计了以平板微热管阵列-泡沫铜复合结构为基础,多孔扁管为载热流体通路,水为载热介质,石蜡为相变材料的热管式蓄热装置。通过实验研究了蓄放热过程中装置内部石蜡的温度分布情况,不同载热流体温度和流量下的蓄放热功率变化,以及装置蓄放热效率等特性。实验结果表明,平板微热管阵列-泡沫铜复合结构可以使箱体内石蜡温度分布更加均匀;增加载热流体和相变材料的温差以及增大流量都可以提高蓄放热功率。实验条件下,该装置的最大蓄热功率为1.24 kW,最大放热功率为1.43 kW。装置蓄热效率为92%,放热效率为94%,总效率为87.4%。 Latent heat thermal energy storage(LHTS)plays an important role in the application of renewable energy and recovery waste heat.An LHTS device based on flat micro heat pipe array(FMHPA)-copper foam composite structure is designed which takes porous flat tubes that can attached to FMHPA easily as the heat transit fluid(HTF)pathway,water as HTF,and paraffin wax as phase change material(PCM).The temperature distribution of paraffin,the effect of temperature and volume flow of HTF on charging and discharging power and the charging and discharging efficiency of LHTS device are investigated experimentally.Results show that the temperature distribution of paraffin wax is more uniform by using the FMHPA-copper foam composite structure.Increasing the temperature difference of the HTF and the PCM and increasing the flow rate of HTF both can increase the charging and discharging power.Under the experimental conditions,the maximum charging power is 1.24 kW,the maximum heat discharging power is 1.43 kW.The charging efficiency is 92%,the discharging efficiency is 94%,and the total efficiency is 87.4%.
作者 梁林 刁彦华 康亚盟 赵耀华 魏向前 陈传奇 LIANG Lin;DIAO Yanhua;KANG Yameng;ZHAO Yaohua;WEI Xiangqian;CHEN Chuanqi(College of Architectural Engineering,Beijing University of Technology,Beijing 100124,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2018年第A01期34-42,共9页 CIESC Journal
基金 北京市自然科学基金项目(3182038)~~
关键词 相变 平板微热管阵列 蓄热 多孔介质 多孔扁管 可持续性 phase change flat micro heat pipe heat storage porous medium multi-hole flattened tubes sustainability
  • 相关文献

参考文献5

二级参考文献44

  • 1刘道平,李瑞阳,陈之航.直接接触固液相变制冰及冰蓄冷系统的研究进展[J].华东工业大学学报,1996,18(3):27-36. 被引量:3
  • 2方铭,陈光明.组合式相变材料组分配比与储热性能研究[J].太阳能学报,2007,28(3):304-308. 被引量:21
  • 3付丰 陈之航.相变潜热蓄热.能源研究与信息,1991,:10-13.
  • 4S. M. Hahnain. Review on Sustainable Thermal Energy Storage Technologies, Part1 [J]. Heat Storage Materials and Techniques Energy Convers, 1998,39 ( 11 ) : 1127 - 1138.
  • 5Shamsundar N. Comparison of numerical methods for diffusion problems with moving boundaries[ C~. Moving Boundary problems, New York: Academic Press, 1981.
  • 6Lunardini V J. Heat Transfer in Cold Climates [ C ]. New York: D Van Nostrand, Reinhold, 1981.
  • 7Fox L. What are the best numerical methods [ C ]. Ox- ford: Clarendon Press, 1975.
  • 8Comini G, Del Guidices, Lew R W, et al. Finite element solution of non - linear heat conduction problem with special reference to phase change[ J ]. Int. J. Numerical Methods Eng, 1974, ( 8 ) :613.
  • 9Martin V. Transportation of energy by utilization of ther- mal energy storage technology [ R ]. Berlin:Joint lEA - Workshop of DHC/ECES,2005.
  • 10Dorgan C E, Elleson J S. Design Guide for Cool Ther- mal Storage [ C ]. Georgia: ASHRAE Inc, 1993.

共引文献72

同被引文献68

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部