期刊文献+

基于石墨烯复合材料的柔性应力传感器制备及力电特性 被引量:3

Preparation and application of flexible strain sensor based on graphene composites
下载PDF
导出
摘要 采用激光热还原方法制备了基于聚苯乙烯(PS)纳米颗粒与石墨烯复合材料的柔性应力传感器。研究表明掺入聚苯乙烯纳米颗粒可以使原本紧密连接的石墨烯碎片接触部分的结构发生破坏和重构。重构后的结构在应力下电阻变化率明显加大,从而提高了传感器的灵敏度。通过与未掺入纳米颗粒的石墨烯应力传感器进行对比,系统地研究了掺入纳米颗粒的石墨烯复合材料应变状态下的电阻改变的物理机制,力电测试结果表明性能最优的为质量占比(PS纳米颗粒质量/石墨烯质量)12. 5%的90 nm纳米颗粒复合传感器,其灵敏度在小应变下(1. 05%)可以达到250,是复合前石墨烯柔性应力传感器的31倍,且该传感器具有较高的重复性。 Flexible strain sensor based on polystyrene(PS)nanoparticles and graphene composites was prepared by laser thermal reduction.Studies show that by incorporating polystyrene nanoparticles,the structure of the contact portions of the graphene fragments that were originally tightly connected can be destroyed and reconstructed.The reconstructed structure increases the resistance change under stress significantly,thereby increasing the sensitivity of the sensor.By comparing with graphene strain sensors without PS nanoparticles,the physical mechanism of the resistance change of the graphene composites doped with PS nanoparticles under strain was systematically studied.The results show that when the mass ratio of PS nanoparticle to graphene is 12.5%,composite sensor sensor prepared with 90 nm PS nanoparticle can reach a sensitivity of 250 at a small strain(1.05%),which is 31 times as high as that of a graphene flexible strain sensor without PS nanoparticle,and the sensor has a high repeatability.
作者 张华 龚天巡 黄文 毛琳娜 俞滨 ZHANG Hua;GONG Tianxun;HUANG Wen;MAO Linna;YU Bin(State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronics Science and Technology of China,Chengdu 610054,China)
出处 《电子元件与材料》 CAS CSCD 北大核心 2018年第9期28-32,共5页 Electronic Components And Materials
基金 国家自然科学基金资助项目(IPOC2013B006) 中科院知识创新工程重要方向项目(KGCX2-EW-315)
关键词 石墨烯 纳米颗粒 激光热还原 灵敏度 柔性应力传感器 高重复性 graphene nanoparticles laser thermal reduction sensitivity flexible strain sensor high repeatability
  • 相关文献

参考文献1

二级参考文献110

  • 1Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
  • 2Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Nano Lett. 2010, 10, 553.
  • 3Morell, E. S.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Phys. Rev. B 2010, 82, 121407.
  • 4Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 5Mermint, N. D. Phys. Rev. 1968, 176, 250.
  • 6Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Nano Res. 2008, 1,273.
  • 7Zhang, C. H.; Fu, L.; Zhang, Y. F.; Liu, Z. F. Acta Chim. Sinica 2013, 71, 308.
  • 8Ling, X.; Zhang, J. Acta Phys-Chim. Sin. 2012, 28, 2355.
  • 9Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. NanotechnoL 2008, 3, 491.
  • 10Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351.

共引文献159

同被引文献8

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部