摘要
根据泛函分析中的对偶理论,给出低次Bernstein基函数的对偶基函数,根据对偶基函数的升阶算法,得到Bernstein基函数的高阶对偶基函数;这种算法与传统的算法相比,避免大量的繁琐计算,也不需要所给基函数是正交基函数,对计算机辅助几何设计及图形绘制系统的效率有重要意义.
First of all,the dual basis functions about the lower Bernstein are given;Secondly,according to the elevation algorithm about the dual basis function,the high order dual basis about the Bernstein basis function is obtained.Comparing with the traditional algorithms,the algorithm avoids complicated computation and dones not need the basis functions to be orthogonal basis functions.It is very important for the efficiency of computer aided geometric design and graphic rendering system.
作者
唐桂林
郭清伟
陈明武
TANG Guilin;GUO Qingwei;CHEN Mingwu(Department of Computer Technology,Anhui Post and Telecommunication College,230031,Hefei,Anhui,China;School of Mathematical,Hefei University of Technology,230009,Hefei,Anhui,China)
出处
《淮北师范大学学报(自然科学版)》
CAS
2018年第3期16-21,共6页
Journal of Huaibei Normal University:Natural Sciences
基金
安徽省高校自然科学基金项目(KJ2017A875
KJ2017A876
KJ2016A382)
安徽省省级质量工程项目(2015jyxm651)
关键词
泛函分析
基函数
对偶基
升阶算法
functional analysis
basis function
dual basis
elevation algorithm