期刊文献+

团簇Ti_3P_2成键及催化活性 被引量:2

Study on the bonding and catalytic activity of Cluster Ti_3P_2
下载PDF
导出
摘要 为进一步了解团簇Ti3P2的成键性质和催化活性,利用密度泛函理论在B3LYP/Lanl2dz水平下引入极化基,利用拓扑学原理对团簇进行优化,得到较稳定的7种构型进行轨道杂化的分析和研究。得到以下结论:构型1(1)是稳定构型中能量最低,其结构最稳定的;团簇Ti3P2各稳定构型中不同原子间的成键强度与效果各不相同,其中Ti-P键成键强度最大,并且对团簇Ti3P2的稳定性影响也很大;在总态密度及分波态密度图中可以发现d-p杂化和p-d-p杂化均引起Ti-P键的生成,和成键键级比例结论一致;团簇Ti3P2中各原子对HOMO和LUMO轨道的贡献存在差异,同时也为其催化反应提供了良好的条件。 To further understand the bonding properties and catalytic activity of cluster Ti3P2,using the density functional theory to introduce a polarized base at the B3LYP/Lanl2dz level,cluster optimization is carried out based on the theory of topology,seven stable configurations were obtained for orbital hybridization analysis and research.The following conclusions are obtained:the configuration 1(1)is the lowest energy in stable configuration,having the most stable structure;the bonding strength and effect of different atoms in cluster Ti3P2 stable configurations were different,the Ti-P bond has the greatest bonding strength,and has a very big influence to the stability of the clusters Ti3P2;it can be found in the total attitude and the density of the wave component both d-p hybridization and p-d-p hybridization result in the generation of the Ti-P bond,the conclusion is consistent with the proportion of bond level;the contribution of each atom in cluster Ti3P2 to HOMO and LUMO orbitals is different,it also provides good conditions for its catalytic reaction.
作者 姜雨晨 方志刚 张伟 李历红 秦瑜 马填棋 JIANG Yuchen;FANG Zhigang;ZHANG Wei;LI Lihong;QIN Yu;MA Tianqi(School of Chemical Engineering,University of Science and Technology Liaoning,Anshan 114051,China)
出处 《辽宁科技大学学报》 CAS 2018年第3期180-185,共6页 Journal of University of Science and Technology Liaoning
基金 2017年国家级大学生创新创业训练计划(201710146000277) 2018年国家级大学生创新创业训练计划(201810146002 201810146003) 2018年辽宁省大学生创新创业训练计划(201810146045 201810146046 201810146047) 自然科学基金重点项目(51634004)
关键词 团簇Ti3P2 成键性质 催化活性 clusters Ti3P2 bonding properties catalytic activity
  • 相关文献

参考文献2

二级参考文献38

  • 1Klement, W. K., Willens, R.,Duwez, P. Nature 1960, 187, 869-870.
  • 2Hafner, J. J. Phys. Rev. 1980, 21(2), 406-426.
  • 3Gaskell, P. H. J. Non-Cryst. Solids, 1997, 222, 1-12.
  • 4Dai, W. L.,Qiao, M. H., Deng, J. E Appl. Surf. Sci. 1997, 120, 119-124.
  • 5Bohonyey, A., Kiss, L.E, Lovas, A., Gerocs, I., Huhn, G. J. Non-Cryst. Solids, 1998, 232-234, 490-496.
  • 6Yokoyama, A., Komiyama, M.,Inoue, H., Masumoto, T., Kimura, H. M. J. Catal. 1981, 68, 355-364.
  • 7Yokoyama, A., Komiyama, M., Inoue, H., Masumoto, T., Kimura, H. M. Acripta. Met. 1981, 15, 365-378.
  • 8Li, H. L., Luo, H. S., Zhang, L.J. Mole. Cata. A, Chem. 2003, 203, 267-275.
  • 9Philips, D. C., Sawhill, S. J., Self, R., Bussell, M. E. J. Catal. 2002, 207, 266-284.
  • 10Lee, S. P., Chen, Y. W. J. Mole. Catal. A Chem 2000, 152, 213-233.

共引文献70

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部