期刊文献+

基于收敛速度和多样性的多目标粒子群种群规模优化设计 被引量:5

Design of Population Size for Multi-objective Particle Swarm Optimization Algorithm Based on the Convergence Speed and Diversity
下载PDF
导出
摘要 针对多目标粒子群优化算法种群规模难以确定的问题,文中提出了一种基于收敛速度和多样性的多目标粒子群优化(Convergence speed and Diversity-based Multi-Objective Particle Swarm Optimization,CD-MOPSO)算法.首先,利用优化过程的收敛速度和多样性指标构造种群规模适应度函数,完成了种群规模与优化性能关系的描述;其次,基于适应度函数设计了一种种群规模自适应调整方法,实现了种群规模的动态调整;最后,将提出的CD-MOPSO在基准优化问题ZDT上测试并应用于城市管网优化,实验结果显示CD-MOPSO能够根据求解问题自动调整种群规模,与NSGA-II、MOPSO。 To determine the population size of multi-objective particle swarm optimization algorithm(MOPSO),an improved MOPSO,based on the convergence speed and diversity,named CD-MOPSO,is proposed.Firstly,the fitness function of population size,which is developed by the convergence speed and diversity during the evolutionary process,is used to describe the relationship between the population size and the performance of MOPSO.Secondly,according to the fitness function,an adaptive adjustment method is designed to update the population size of MOPSO dynamically.Finally,the proposed CD-MOPSO is tested on the ZDT benchmark optimization problems and applied to a real optimization problem of urban pipe networks.The experimental results show that the proposed CD-MOPSO can adjust the population size automatically according to the problem,compared with the performance of NSGA,MOPSO,SPEA2 and EMDS-MOPSO,CD-MOPSO has faster convergence speed with better optimization results.
作者 韩红桂 武淑君 HAN Hong-gui;WU Shu-jun(Department of Information,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第9期2263-2269,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61622301) 北京市自然科学基金(No.4172005) 科技部水专项(No.2017ZX07104)
关键词 多目标粒子群优化算法 种群规模 自适应调整方法 动态调整 适应度函数 收敛速度 多样性 基准测试函数 城市管网优化 multi-objective particle swarm optimization algorithm(MOPSO) population size adaptive adjustment method dynamic adjustment fitness function convergence speed diversity benchmark test functions urban pipe networks optimization
  • 相关文献

参考文献1

二级参考文献12

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proc of the 1EEE International Conference on Neural Networks[ C]. Piscataway: IEEE Press, 1995.1942 - 1948.
  • 2Coello Coello C A, Pulido G T, Lechuga M S. Hand/ing multiple objectives with particles swarm onizafiorl[J]. q]-ansactions on Evolutionary Con--lmtation,2004,8(3):256- 279.
  • 3Sierra M R, Coello Coello C A. Improving PSO-based multi- objective optimization using crowding, mutation and e-domi- nance [ A ]. Proceedings of 3rd International Conference on Evolutionary Multi-cn'terion Optimization [ C ]. Berlin: Springer, 2005.505 - 519.
  • 4Yen GG, Leong WF. Dynamic multiple swarms in multiobjec- five particle swarm optimization [ J ]. mEE Transacations on System, Man, Cybernetics,Part A,2009,39(4) :890- 911.
  • 5Xuewen Xia, Jingnan Liu, Zhongbo Hu. An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space[ J]. Applied Soft Computing, 2014,23: 76 - 90.
  • 6Ziflzer E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[ A]. Proceedings of In- ternational Conference on Evolutionary Method for Design, Optimization and Control with Applications to Industrial Prob- lems[ C ]. Berlin: Springer, 21302.95 - 100.
  • 7Deb K,Pratab A,Agarwal S,et al.A fast and elitist multi-ob- jective genetic algorithm: NSGA-I/[ J]. IEEE Transactions on Evolutionary Cornputation, 2002,6(2) : 182 - 197.
  • 8Qingfu Zhang,Hui Li. MOEA/D: A multi-objective evolution- ary algorithm based on decomposition[ J]. 1EEE Transactions on Evolutionary Computation, 2007,11 (6) : 712 - 731.
  • 9Zitler E, Deb K, Thiele L. Comparison of multi-objective evo- lutionary algorithms: Empirical results[ J]. Evolutionary Compu- tation,2000,8:173 - 195.
  • 10Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-ob- jective optimization test problems [ A ]. Proc of the IEEE Congress on Evolutionary Computation ( CEC 2002) [ C ]. Pis- cataway: IEEE Service Center,2002. 825 - 830.

共引文献29

同被引文献46

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部