摘要
针对多目标粒子群优化算法种群规模难以确定的问题,文中提出了一种基于收敛速度和多样性的多目标粒子群优化(Convergence speed and Diversity-based Multi-Objective Particle Swarm Optimization,CD-MOPSO)算法.首先,利用优化过程的收敛速度和多样性指标构造种群规模适应度函数,完成了种群规模与优化性能关系的描述;其次,基于适应度函数设计了一种种群规模自适应调整方法,实现了种群规模的动态调整;最后,将提出的CD-MOPSO在基准优化问题ZDT上测试并应用于城市管网优化,实验结果显示CD-MOPSO能够根据求解问题自动调整种群规模,与NSGA-II、MOPSO。
To determine the population size of multi-objective particle swarm optimization algorithm(MOPSO),an improved MOPSO,based on the convergence speed and diversity,named CD-MOPSO,is proposed.Firstly,the fitness function of population size,which is developed by the convergence speed and diversity during the evolutionary process,is used to describe the relationship between the population size and the performance of MOPSO.Secondly,according to the fitness function,an adaptive adjustment method is designed to update the population size of MOPSO dynamically.Finally,the proposed CD-MOPSO is tested on the ZDT benchmark optimization problems and applied to a real optimization problem of urban pipe networks.The experimental results show that the proposed CD-MOPSO can adjust the population size automatically according to the problem,compared with the performance of NSGA,MOPSO,SPEA2 and EMDS-MOPSO,CD-MOPSO has faster convergence speed with better optimization results.
作者
韩红桂
武淑君
HAN Hong-gui;WU Shu-jun(Department of Information,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2018年第9期2263-2269,共7页
Acta Electronica Sinica
基金
国家自然科学基金(No.61622301)
北京市自然科学基金(No.4172005)
科技部水专项(No.2017ZX07104)
关键词
多目标粒子群优化算法
种群规模
自适应调整方法
动态调整
适应度函数
收敛速度
多样性
基准测试函数
城市管网优化
multi-objective particle swarm optimization algorithm(MOPSO)
population size
adaptive adjustment method
dynamic adjustment
fitness function
convergence speed
diversity
benchmark test functions
urban pipe networks optimization