期刊文献+

水热法合成氧化铁/石墨烯复合材料及其电化学性能研究 被引量:2

Synthesis of Fe_2O_3/GO Composite by Hydrothermal Method and Its Electrochemical Performances
下载PDF
导出
摘要 通过一步水热法合成了Fe_2O_3/GO复合材料,得到的氧化铁能很好地与石墨烯复合在一起,并且具有比同方法得到的纯Fe_2O_3更小的颗粒直径.Fe_2O_3/GO复合材料表现出了很好的电化学性能,在1.0 A·g^(-1)的电流密度下能够释放出高达726/715 mAh·g^(-1)的放/充容量,其循环稳定性也得到大大提高.石墨烯的有效复合不仅为电极材料提供了高的导电性,而且有效缓解反复充放电过程中体积效应带来的应力集中,防止材料粉化脱落,从微观结构的改进中有效提升了材料的宏观电化学性能. Fe2O3/GO composite is synthesized through a one-pot hydrothermal method.The as-prepared Fe2O3 is well composited with graphene.It reveals a smaller particle size than that of the pure Fe2O3 obtained in the same way.Enhanced electrochemical performances are obtained for Fe2O3/GO.The electrode can deliver discharge/charge capacities of 726/715 mAh·g-1 at the current density of 1.0 A·g-1.Furthermore,the cycle stability of the electrode is also significantly improved.It proves that graphene in the composite not only offers a high conductivity of electron,but also releases the stress brought from the volumetric effect during repeated charge-discharge processes.Thus,it stops that pulverization of the electrode and improves the electrochemical properties through the regulation of the microstructures.
作者 刘强 张驰 王亚杰 宋志 季红梅 杨刚 施少君 LIU Qiang;ZHANG Chi;WANG Yajie;SONG Zhi;JI Hongmei;YANG Gang;SHI Shaojun(School of Chemistry and Materials Engineering,Changshu Institute of Technology,Changshu 215500,China)
出处 《常熟理工学院学报》 2018年第5期25-29,共5页 Journal of Changshu Institute of Technology
关键词 水热法 氧化铁 石墨烯 锂离子电池 负极材料 hydrothermal method iron oxides graphene lithium ion battery anode materials
  • 相关文献

参考文献1

二级参考文献218

  • 1Goodenough, J. B. Evolution of strategies for modem rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053 1061.
  • 2Aric6, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
  • 3Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160-2181.
  • 4Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291 312.
  • 5Tarascon, J.-M.; Armand, M rechargeable lithium batteries Issues and challenges facing Nature 2001, 414, 359 367.
  • 6Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.
  • 7Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451,652557.
  • 8Chen, X. B.; Li, C.; Gritzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage Chem. Soc. Rev. 2012, 41, 7909 7937.
  • 9Kang, K.; Meng, Y. S.; Brdger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311,977-980.
  • 10Mai, L. Q; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828 11862.

共引文献19

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部