期刊文献+

基于超限学习机的轴向柱塞泵滑靴磨损故障诊断 被引量:5

Fault Diagnosis of Sliding Shoe Wear of Axial Piston Pump Based on ELM
下载PDF
导出
摘要 为了提高故障诊断的分类准确度并减少分类时间,运用一种新的分类器即超限学习机(ELM)对轴向柱塞泵滑靴磨损进行故障诊断与识别。采集轴向柱塞泵正常工作状态和不同滑靴磨损工作状态下的信号;对采集到的信号进行预处理,提取出8维的特征向量;运用ELM和其他分类器分别对其进行诊断与识别。对比试验结果表明,新的方法故障诊断准确度高且诊断速度快。 In order to improve the classification accuracy of fault diagnosis and reduce the classification time,a new classifier,namely ELM(Extreme Learning Machine)was proposed to diagnose and identify sliding shoe wear of the axial piston pump.Signals of the axial piston pump of the normal working state and the different sliding shoe wear were collected.The signal was preprocessed and a 8-dimensional feature vector was extracted.ELM and others were used to diagnose and identify the sliding shoe wear of axial piston pump.The results show that ELM has higher accuracy and diagnosis speed.
作者 胡晋伟 兰媛 黄家海 曾祥辉 HU Jinwei;LAN Yuan;HUANG Jiahai;ZENG Xianghui(School of Mechanical Engineering,Taiyuan University of Technology,Taiyuan Shanxi 030024,China;Key Laboratory of Advance Transducers and Intelligent Control System,Ministry of Education,Taiyuan Shanxi 030024,China)
出处 《机床与液压》 北大核心 2018年第17期161-163,168,共4页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51405327) 山西省科技成果转化与推广计划项目(20051002)
关键词 轴向柱塞泵 滑靴磨损 故障诊断 超限学习机 Axial piston pump Sliding shoe wear Fault diagnosis Extreme learning machine(ELM)
  • 相关文献

参考文献3

二级参考文献28

  • 1杜巧连,张克华.基于自身振动信号的液压泵状态监测及故障诊断[J].农业工程学报,2007,23(4):120-123. 被引量:33
  • 2Leardi R.Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection [J].Journal of Chemometrics,1994,8(1):65-79.
  • 3Gonzalez A,Lupiaffiez L R.Genetic algorithms ap-plied to feature selection in PLS regression:how and when to use them [J].Chemometrics and Intelligent Laboratory Systems,1998,41(2):195-207.
  • 4Wanchana S,Yamashita F,Hashida M.Quantitative structure/property relationship ananlysis of Caco-2 permeability using a genetic algorithm-based partial least squares method [J].Journal of Pharmaceutical Sciences,2002,91(10):2230-2239.
  • 5Han S H,Yang H.Screening important design varia-bles for building a usability model:genetic algorithm-based partial least-squares approach [J].International Journal of Industrial Ergonomics,2004,33(2):159-171.
  • 6Narayanan A, Moore M. Quantum inspired Genetic Algorithms [C]//Proceeding of IEEE International Conference on Evolutionary Computation. Nagoya, Japan, 1996: 61-66.
  • 7Han Kuk-Hyun, Kim Jong-Hwan. Genetic Quan tum Algorithm and Its Application to Combinatorial Optimization Problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, USA: IEEE, 2000, 2: 1354-1360.
  • 8JinW D, Zhang G X, Hu L Z. A Novel Parallel Quantum Genetic Algorithm[C]//Proeeedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologles, 2003. PDCAT' 2003. Chengdu.. IEEE, 2003:693-697.
  • 9曹建军,张培林,任国全,张英堂.基于蚁群优化的振动信号特征选择[J].振动与冲击,2008,27(5):24-26. 被引量:8
  • 10姜万录,宋丽娜,杨少辉,姚志飞.小波包络新方法在液压泵故障诊断中的应用[J].测控技术,2008,27(8):24-27. 被引量:4

共引文献24

同被引文献51

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部