期刊文献+

考虑能耗的多传感器融合加工表面粗糙度预测方法 被引量:7

An Approach for Surface Roughness Prediction in Machining Based on Multi-sensor Fusion Considering Energy Consumption
下载PDF
导出
摘要 目的提出一种考虑能耗的多传感器融合加工表面粗糙度预测方法,精确预测零件表面粗糙度。方法首先采集车削过程中的功率和振动信号,测量加工表面粗糙度值,利用集成经验模态分解(Ensemble empirical mode decomposition,EEMD)和小波包分析提取振动信号的时域与频域特征,联合功率信号的时域特征、能耗特征与切削参数,构造联合多特征向量。然后采用核主成分分析(Kernel principal component analysis,KPCA)对联合多特征向量进行融合降维处理生成融合特征。最后将融合特征作为基于支持向量机(Support vector machine,SVM)的表面粗糙度预测模型的输入特征,并使用遗传算法(Genetic algorithm,GA)对SVM模型相关核参数进行优化以提高预测精度。结果预测得到的表面粗糙度平均相对误差为4.91%,最大误差为0.111μm,预测时间为9.24 s。与单传感器预测方法及多传感器联合特征预测方法相比,多传感器融合预测方法具有最高的准确率且预测速度快。结论多传感器采集的信息更全面、准确,保证了预测的准确性,对特征进行融合可进一步提高预测精度。 In order to predict surface roughness of the workpiece accurately,an approach for surface roughness prediction in machining based on multi-sensor fusion considering energy consumption is proposed.The power signal and the vibration signal of the turning process were collected firstly.Surface roughness was measured.The time domain and frequency domain characteristics of the vibration signal were extracted by using the EEMD and wavelet packet analysis.And the vibration features with the time domain feature of power signal,energy features and cutting parameters constructed the joint multi-eigenvectors.Then the KPCA was used to fuse the joint multi-eigenvectors to generate the fusion feature.Finally,the fusion feature was taken as the input characteristic of the SVM-based surface roughness prediction model.In addition,GA was used to optimize the relevant kernel parameters of SVM model to improve the prediction accuracy.For the prediction results obtained by multi-sensor fusion,the mean relative error was 4.91%,the maximum error was 0.111|xm and the prediction time was 9.24 seconds.The experimental results showed the proposed method had the highest prediction accuracy compared with the joint feature and single sensor.A comparative study with multi-sensor joint feature prediction method and signal-sensor feature prediction method shows the information collected by multi-sensor is more comprehensive and accurate,which ensures prediction accuracy and the prediction accuracy can be further improved by fusing the features.
作者 谢楠 周俊锋 郑蓓蓉 XIE Nan;ZHOU Jun-feng;ZHENG Bei-rong(Sino-German College of Applied Sciences,Tongji University,Shanghai 201804,China;College of Mechanical and Electrical Engineering,Wenzhou University,Wenzhou 325000,China;School of Mechanical Engineering,Tongji University,Shanghai 201804,China)
出处 《表面技术》 EI CAS CSCD 北大核心 2018年第9期240-249,共10页 Surface Technology
基金 国家自然科学基金项目(71471139) 国家工信部智能制造标准化项目~~
关键词 能耗 多传感器融合 表面粗糙度 预测方法 核主成分分析 支持向量机 energy consumption multi-sensor fusion surface roughness prediction approach KPCA SVM
  • 相关文献

参考文献4

二级参考文献42

  • 1张永宏,胡德金,张凯,徐俊杰.基于进化神经网络的曲面磨削表面粗糙度预测[J].上海交通大学学报,2005,39(3):373-376. 被引量:14
  • 2史金飞,张晓玲,钟秉,林黄仁.BP神经网络在磨削烧伤诊断中的应用[J].东南大学学报(自然科学版),1996,26(4):52-55. 被引量:4
  • 3何永利,段虹,王仲民.铝合金高速切削表面粗糙度的实验研究[J].机械设计与制造,2006(1):117-118. 被引量:23
  • 4刘红星,魏强,屈梁生.基于人工神经网络建模的磨削烧伤预测[J].磨床与磨削,1996(3):28-30. 被引量:4
  • 5METAXIOTIS K,KAGIANNAS A,ASKOUNIS A,et al.Artificial intelligence in short term electric load forecasting:A state-of-the-art survey for the research[J].Energy Conversion and Management,2003(44):1 525-1 534.
  • 6VAPNIK V N.The nature of statistical learning theory[M].New York:Spring-Verlag,1999.
  • 7VAPNIK V N.An overview of statistical learning the-ory[J].IEEE Transaction Neural Networks,1999,10(5):988-999.
  • 8SUYKENS J A K,VANDEWALLE J.Least squares sup-port vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 9SUYKENS J A K,LUKAS S,VANDEWALLE J.Sparse least squares support vector machine classifiers[C]//Proceedings of ESANN '2000.8th European Symposium on Artificial Neural Networks,April 26-28,2000,Bruges,Belgium,2000:37-42.
  • 10WU Dehui.Prediction met hod for machining quality based on weighted least squares support vector machine[C]//Proceedings of the 6th World Congress on Control and Automation,Dalian,China.2006,6:21-23.

共引文献50

同被引文献95

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部