期刊文献+

基于高光谱的喀斯特地区典型农田土壤有机质含量反演 被引量:5

Inversion of Soil Organic Matter Content in Typical Farmland of Karst Region Based on Hyperspectral Data
下载PDF
导出
摘要 【目的】利用高光谱数据定量反演喀斯特地区土壤有机质含量,为喀斯特地区快速、大范围、实时地监测土壤有机质含量提供更多的技术手段。【方法】利用机载高光谱成像系统和便携式地物光谱仪分别获取土壤光谱数据,基于原始光谱反射率和不同光谱变换数据,分析其与土壤有机质含量的相关性,以偏最小二乘法建立模型预测土壤有机质含量。【结果】2种数据源都可以用于土壤有机质含量预测,其中,基于ASD光谱一阶微分变换建立的模型预测精度较高,验证集决定系数(Rv^2)为0.910,相对分析误差(RPD)为2.68;基于GS光谱二阶微分变换建立的模型预测效果较好,验证集Rv^2为0.772,RPD为1.49。【结论】ASD光谱与GS光谱建模预测精度相差较大,ASD光谱客观条件影响较小、光谱波段更宽、光谱分辨率更高,具有更好的预测能力;低空无人机获取的GS光谱也具有一定的预测能力。 【Objective】The soil organic matter content in karst region is quantitatively inverted by the hyperspectral data to provide more technological means for rapid,extensiveness and actual time monitoring of soil organic matter content in karst region.【Method】The soil spectral data are acquired by airborne hyperspectral imaging system and portable ground spectrometer and the correlations between the acquired soil spectrum data and soil organic matter content are analyzed based on original spectrum reflectance and different spectrum transformation data.The prediction model of soil organic matter content is established by the partial least squares.【Result】Two data sources both can be used for prediction of soil organic matter content.The precision of the established model based on first order differential transformation of ASD spectrum is high and the verification set coefficient(Rv 2)and relative percent deviation(RPD)are 0.910 and 2.68 separately.The prediction effect of the established model based on second order differential transformation of GS spectrum is better and the verification set coefficient(Rv 2)and relative percent deviation(RPD)are 0.772 and 1.49 respectively.【Conclusion】There is a great difference in prediction accuracy of soil organic matter content between the established model based on ASD spectrum and the established model based on GS spectrum.ASD spectrum with the advantages of less objective condition influence,wider spectral band and higher spectral resolution has the better prediction capacity of soil organic matter content but GS spectrum acquired by the low-altitude UAV has a certain prediction capacity of soil organic matter content.
作者 文锡梅 兰安军 易兴松 张吟 李洋 秦志佳 WEN Xi-mei;LAN An-jun;YI Xing-song;ZHANG Yin;LI Yang;QIN Zhi-jia(Guizhou Institute of Mountainous Resources,Guizhou Guiyang 550001,China;School of Geography and Environment,Guizhou Normal University,Guizhou Guiyang 550001,China;Guizhou Academy of Hydraulic Sciences,Guizhou Guiyang 550002,China;Administration Office,Guizhou Soil and Water Conservation Science and Technology Demonstration Park,Guizhou Guiyang 550002,China)
出处 《西南农业学报》 CSCD 北大核心 2018年第8期1649-1654,共6页 Southwest China Journal of Agricultural Sciences
基金 贵州省科技支撑计划项目"重金属污染监测及阻控研究与示范-2"[黔科合(2016)2595-2] 贵州省科技计划项目"喀斯特山区低碳旅游示范区建设关键技术与示范"[黔科合SY字(2012)3058] 贵州省科技计划项目"贵州省山地资源研究所大型科研仪器共享服务后补助专项"[黔科合平台人才(2017)5783] 贵州省水利厅科技处项目"基于GIS的灌区数字化系统研究--以云雾灌区为例"(KT201706)
关键词 高光谱 土壤有机质 喀斯特 偏最小二乘法 Hyperspectrum Soil organic matter Karst Partial least squares
  • 相关文献

参考文献16

二级参考文献207

共引文献189

同被引文献95

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部