期刊文献+

无线传感网中分布式信号检测的多维特征值算法优化研究 被引量:7

Optimization of multidimensional eigenvalue algorithm for distributed signal detection in wireless sensor networks
下载PDF
导出
摘要 在大规模无线传感网的分布式信号检测中,针对相关性较高并有一定冗余度的数据集,在保证数据采集可信任的情况下,通过高效算法提高精度是重要的研究方向。提出一种分散功率算法DPM,用于分布式计算样本协方差矩阵的最大特征值,通过将平均共识和迭代功率法相结合,在相对少量样本和有限次数迭代的条件下,实现了协方差矩阵最大特征值的较快收敛速度和较高精度估计。对比MECD算法和DST算法,仿真结果表明,新算法有效减少了信号样本数和迭代次数,收敛速度较快,可获得更高的检测精度。 In the distributed signal detection of large-scale wireless sensor networks,data sets feature high correlation and some redundancy,so when ensuring data acquisition is trusted,it is an important research direction to improve accuracy of high efficiency algorithms.We propose a decentralized power algorithm for the distributed calculation of the maximum eigenvalue of the sample covariance matrix.By combining the average consensus and the iterative power methods,the fast convergence rate and the higher accuracy estimation of the maximum eigenvalue of the covariance matrix are realized under the condition of relatively small sample and a finite number of iterations.Compared with the MECD algorithm and the DST algorithm,simulation results show that the proposed algorithm can effectively reduce the number of signal samples and the number of iterations,the convergence speed is faster,and the detection accuracy can be improved.
作者 刘云 陈倩 LIU Yun;CHEN Qian(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第9期1585-1590,共6页 Computer Engineering & Science
基金 国家自然科学基金(61262040)
关键词 分布式信号检测 平均共识 功率法 最大特征值 DPM算法 distributed signal detection average consensus power method maximum eigenvalue DPM algorithm
  • 相关文献

参考文献5

二级参考文献33

  • 1吕剑飞,卢迪.ZOO MFFT在车载FSK信号高精度检测中的应用[J].自动化技术与应用,2007,26(1):63-64. 被引量:8
  • 2丁康,潘成灏,李巍华.ZFFT与Chirp-Z变换细化选带的频谱分析对比[J].振动与冲击,2006,25(6):9-12. 被引量:56
  • 3Ding M,Chen D C,Xian K,et al. Localized Fault-Tolerant E-vent Boundary Detection in Sensor Networks[C]// Proc ofthe IEEE INFOCOM,05,2005:902-913.
  • 4Branch J ,Szymanski B,Giannella C, et al. In-Network OutlierDetection in Wireless Sensor Networks[C]//Proc of the 26thIEEEInt,l Conf on Distributed Computing Systems, 2006 :51.
  • 5Krishnamachari B, Iyengar S. Distributed Bayesian Algorithmsfor Fault-Tolerant Event Region Detection in Wireless SensorNetworks[JJ. IEEE Transactions on Computers? 2004 ?53(3):241-250.
  • 6Krasniewski M D, Varadharajan P, Rabeler B, et al. Tibft:Trust Index Based Fault Tolerance for Arbitrary Data Faultsin Sensor Networks[C]//Proc of the IntM Conf on Dependa-ble Systems and Networks, 2005 : 672-681.
  • 7Xiao X, Peng W, Hung C, et al. Using SensorRanks for In-Network Detection of Faulty Readings in Wireless SensorNetworks[C]//Proc of MobiDE,07,2007: 1-8.
  • 8URKOWITZ H. Energy detection of unknown deterministic signals [J]. Proceedings of the IEEE, 1967, 55(4) : 523 -531.
  • 9ZHANG W, MALLIK R K, LETAIEF K. Optimization of coopera- tive spectrum sensing with energy detection in cognitive radio net- works [ J]. IEEE Transactions on Wireless Communications, 2009, 8(12) : 5761 -5766.
  • 10CARDOSO L S, DEBBAH M, BIANCHI P, et al. Cooperative spec- trum sensing using random matrix theory [C]// ISWPC 2008:Proceedings of the 3rd International Symposium on Wireless Pervasive Computing. Piscataway: IEEE, 2008:334-338.

共引文献27

同被引文献104

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部