期刊文献+

无增益微通道板时空特性的模拟研究 被引量:1

Simulation on temporal and spatial characteristics for the non-gain microchannel plate
下载PDF
导出
摘要 为提高分幅相机的时间分辨率,采用无增益微通道板(microchannel plate,MCP)代替有增益MCP研制分幅相机.利用Monte Carlo方法对无增益MCP的时间分辨特性、渡越时间弥散及空间分辨特性进行了理论研究.结果表明,无增益MCP的时间分辨率随着选通脉冲宽度的减小而提高,无增益MCP中电子的渡越时间弥散小于有增益MCP的渡越时间弥散.无增益MCP变像管的空间分辨率优于有增益MCP变像管的空间分辨率.因而,无增益MCP可以减小电子的渡越时间弥散,获得更好的时间分辨率. To improve the temporal resolution of the framing camera,a non-gain microchannel plate(MCP)instead of a gain MCP is used to study the framing camera.The temporal resolution,the transit time spread,and the spatial resolution of the non-gain MCP are simulated by using the Monte Carlo method.The simulated results show that the temporal resolution of the non-gain MCP increases with the decrease of the gating pulse width.And the transit time spread in the non-gain MCP is lower than that in the gain MCP.Furthermore,the spatial resolution in the non-gain MCP is better than that in the gain MCP.Therefore,the non-gain MCP could reduce the transit time spread,and obtain the better temporal resolution for the framing camera.
作者 张珂 蔡厚智 刘进元 ZHANG Ke;CAI Houzhi;LIU Jinyuan(Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University,Shenzhen 518060,Guangdong Province,P.R.China)
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2018年第5期500-504,共5页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(11775147) 深圳市科技计划资助项目(JCYJ20170302153912966 JCYJ20160608173121055) 深圳大学新引进教师科研启动资助项目(2017015)~~
关键词 X射线光学 分幅相机 无增益微通道板 时间分辨率 渡越时间弥散 惯性约束聚变 X-ray optics framing camera non-gain microchannel plate temporal resolution transit time spread inertial confinement fusion
  • 相关文献

参考文献2

二级参考文献13

  • 1MkGVN992-1996, Image intensifier tubes speci-fications philips Photonics[S]..
  • 2Bruce N Laprade,et al. A low noise figure micro-channel plate optimized for Gen Ⅲ image intensification systems[J]. SPIE,1990,1243:162-172.
  • 3Hurricane O A, Callahan D A , Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506: 343-348.
  • 4Park H -S, Hurricane O A, Callahan D A, et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility[J]. Phys Rev Lett, 2014, 112(5): 055001-1-055001-5.
  • 5Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Phys Plasmas, 2014, 21(5): 056313-1-056313-9.
  • 6Michel D T, Craxton R S, Davis A K, et al. Implosion dynamics in direct-drive experiments[J]. Plasma Phys Control Fusion, 2015, 57(1): 014023.
  • 7Hurricane O A, Callahan D A, Casey D T, et al. The high-foot implosion campaign on the national ignition facility[J]. Phys Plasmas, 2014, 21(5): 056314-1-056313-14.
  • 8Bell P M, Killkenny J D, Hanks R, et al. Measurements with a 35 psec gate time microchannel plate camera[C]//SPIE, 1990, 1346: 456-464.
  • 9Nagel S R, Hilsabeck T J, Bell P M, et al. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Rev Sci Instrum, 2012, 83(10): 10E116-1-10E116-3.
  • 10Cai Houzhi, Liu Jinyuan, Niu Lihong, et al. Monte Carlo simulation for microchannel plate framing camera[J]. Optical Engineering, 2010, 49(8): 080502-1-080502-3.

共引文献58

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部