摘要
为了提升图像相似度判别的有效性,通过定义相似度差值(或区分度),设计了基于生成式对抗网络的区分度模型,并与传统的区分度模型进行了对比试验.试验结果表明,本文模型提升了图像相似度的有效性和稳定性.
In order to improve the validity of image similarity discrimination,the region diversity model based on generative confrontation network is designed by defining similarity difference(or division degree).Compared with the traditional discriminant model,the experimental results show that the proposed model improves the effectiveness and stability of image similarity.
作者
李昌利
皇望
樊棠怀
LI Changli;HUANG Wang;FAN Tanghuai(College of Computer&Information,Hohai University,Nanjing211100,China;School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China)
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2018年第3期11-14,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(61563036
61871174)
关键词
生成式对抗网络
区分度模型
相似度
generative adversarial networks
similarity
discrimination