期刊文献+

输流曲管面内振动的小波有限元方法研究 被引量:3

A wavelet-based finite element method for in-plane vibration of curved pipes
下载PDF
导出
摘要 将小波有限元应用于求解输流曲管面内流致振动问题,是小波在数值计算上一个新的尝试。针对输流曲管面内振动高阶微分方程,采用区间样条小波函数作为位移场的插值函数,建立了尺度为4、阶数为6的区间样条小波输流曲管单元,推导了小波单元质量矩阵、小波单元刚度矩阵和小波单元阻尼矩阵,从而获得了输流曲管面内振动的动力学方程组。在数值算例中,计算了输流直管和曲管在几种典型边界条件下的频率,这些数值结果与伽辽金方法、传统有限元方法所得结果吻合较好,并且计算时间短。研究表明,新型小波曲管单元在求解输流曲管面内线性振动问题有一定的优势,进一步的研究可望推广到输流曲管的非线性动力学分析中。 In-plane vibrations of fluid-conveying curved pipes were investigated by using the wavelet-based finite element(FE)method as a new attempt of wavelet in numerical calculation.In order to solve the high order differential equation of fluid-conveying curved pipes’in-plane vibration,the interval spline wavelet function was taken as the interpolation one of the displacement field.The curved pipe element with interval spline wavelet of scale 4 and order 6 was established.The wavelet-based curved pipe element mass matrix,stiffness matrix and damping matrix were derived.Then,the dynamic equations for in-plane vibration of fluid-conveying curved pipes were derived.In numerical examples,natural frequencies of fluid-conveying straight pipe and curves one were computed with the proposed method under several typical boundary conditions.The numerical results agreed well with those obtained using Galerkin method and the traditional finite element one,and the former costed less time.The study showed that the new type wavelet-based curved pipe element has a certain advantage in solving in-plane linear vibration problems of curved pipes;after further studying,it can be extended to analyze nonlinear dynamic problems of fluid-conveying curved pipes.
作者 曹建华 刘永寿 刘伟 CAO Jianhua;LIU Yongshou;LIU Wei(School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnic University,Xi’an 710029,China;College of Mechanical and Electrical Engineering,Huangshan Institute,Huangshan 245021,China)
出处 《振动与冲击》 EI CSCD 北大核心 2018年第17期256-260,共5页 Journal of Vibration and Shock
基金 国家自然基金(51305350)
关键词 输流管道 曲管 小波有限元 样条小波 fluid-conveying pipe curved pipe wavelet-based finite element(FE) spline wavelet
  • 相关文献

参考文献3

二级参考文献40

  • 1倪樵,王琳,黄玉盈,何玉明.谐激励作用下输流曲管的混沌振动研究[J].固体力学学报,2005,26(3):249-255. 被引量:4
  • 2王琳,倪樵.具有非线性运动约束输液曲管振动的分岔[J].振动与冲击,2006,25(1):67-69. 被引量:19
  • 3Xiang,J.W., Chen,X.F., Yang,L.F. and He,Z.J., A class of wavelet-based flat elements using B-spline wavelet on the interval and its applications. Computer Modeling in Engineering and Sciences, 2008, 23(1): 1-12.
  • 4Libre,N.A., Emdadi,A., Kansa,E.J., Shekarchi,M. and Rahimian,M., A fast adaptive wavelet scheme in RBF collocation for nearly singular potential PDEs. Computer Modeling in Engineering and Sciences, 2008, 38(3): 263-284.
  • 5Libre,N.A., Emdadi,A., Kansa,E.J., Shekarchi,M. and Rahimian,M., Wavelet based adaptive RBF method for nearly singular potential-type problems on irregular domains. Computer Modeling in Engineering and Sciences, 2009, 50(2): 161-190.
  • 6Yan,Z.Z., Wang,Y.S. and Zhang,C.Z., A method based on wavelets for band structure analysis of phononic crystals. Computer Modeling in Engineering and Sciences, 2008, 38(1): 59-88.
  • 7Luigi,G., Alexey, N. and Stefan,G. et al., Daubechies wavelets as a basis set for density functional pseudopotential calculations. The Journal of Chemical Physics, 2008, 129(1): 104-109.
  • 8Ma,J.X., Xue,J.J., Yang,S.J. and He,Z.J., A study of the construction and application of a Daubechies wavelet-based beam element. Finite Elements Analysis and Design, 2003, 39(10): 965-975.
  • 9Chen,X.F., Yang,S.J., Ma,J.X. and He,Z.J., The construction of wavelet finite element and its application. Finite Elements Analysis and Design, 2004, 40(5-6): 541-554.
  • 10Chen,W.H. and Wu,C.W., A spline wavelets element method for frame structures vibration. Computational Mechanics. 1995, 16(1): 11-21.

共引文献24

同被引文献6

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部