摘要
证明了Stratified群上与次椭圆Schr?dinger算子相联系的Riesz变换的L^p(1 <p≤2)有界性,并用以研究与该Schr?dinger算子相联系的Hardy空间。由于涉及的位势函数较为广义,相关算子的核并不是Calderón-Zygmund型的。
The boundedness of Riesz transform associated to sub-elliptic Schr dinger operators on Stratified groups is proven.By this boundedness,the Hardy spaces associated to the Schr dinger operators are investigated.Because of the larger class of potentials considered here,the kernels of the operators are not Calder n-Zygmund type.
作者
贺凯莉
田晓晓
HE Kaili;TIAN Xiaoxiao(Department of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China;School of Mathematics,Sun Yat-sen University,Guanzhou 510275,China)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第5期145-149,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金面上项目(11671414)