期刊文献+

基于Spark的3D点云数据空间索引技术 被引量:2

Spatial Index of 3D Point Cloud Data Based on Spark
下载PDF
导出
摘要 针对Spark引擎不支持多维空间查询的问题,提出基于R树的二级空间索引,即在每个Worker节点上创建R子树,并将这些子树作为孩子,在Master节点上创建R树。针对LRU算法内存替换粒度粗、结果不够精确的问题,提出基于数据使用权重的内存替换方法。该方法将每次实际使用数据量与其总量的比值作为替换权重,将热点场景数据以RDD形式持久化至内存中,提高了基于内存查询的效率。根据远粗近细的视觉原理提出细节层次查询,该方法将最能代表物体特征的点云数据先传输给客户端,或者仅把简化模型点数据传给客户端,以解决网络带宽不足和数据加载延迟的问题。实验证明,文中方法能有效解决Spark多维空间的查询问题,查询效率得到了明显提高。 Two level spatial index based on R tree was presented according to the problem that spark engine doesn’t support multi-dimensional spatial query,that is,the R subtree is created on each worker node,and these subtrees are used as children to create the R tree on the master node.Memory replacement granularity of LRU algorithm is coarse,and the result is not accurate enough.For this reason,the method of memory replacement based on data usage weight was proposed.The ratio of actual used amount of data and its total amount is used as replacement weight.The method stores the hot scene data in RDD form into memory and improves the query efficiency based on memory.According to the visual principle of far thick and near fine,the level of detail query was presented.The point cloud data that best represent the object characteristics are firstly transmitted or the simplified model data are only transmitted to the client,so as to solve the problem of insufficient network bandwidth and data loading delay.Experimental results show that the proposed method can effectively solve the problem of multi-dimensional spatial query on spark,and the query efficiency is improved obviously.
作者 赵尔平 孟小峰 ZHAO E r-ping;MENG Xia o-feng(School of Information Engineering,Xizang Minzu University,Xianyang,Shaanxi 712082,China;School of Information,Renmin University of China,Beijing 100872,China)
出处 《计算机科学》 CSCD 北大核心 2018年第9期213-219,共7页 Computer Science
基金 国家自然科学基金(61762082) 西藏自治区自然科学基金(12KJZRYMY07)资助
关键词 SPARK 多维空间索引 3D点云数据 数据使用权重 细节层次 虚拟旅游 Spark,Multi-dimensional spatial index 3D point cloud data Data usage weight Level of detail,Virtual tourism
  • 相关文献

参考文献3

二级参考文献30

  • 1刘畅,裴继红,孙宏元,龚忻.一种用于多分辨空间数据的R树索引结构[J].深圳大学学报(理工版),2004,21(3):242-246. 被引量:3
  • 2董新华,李瑞轩,周湾湾,王聪,薛正元,廖东杰.Hadoop系统性能优化与功能增强综述[J].计算机研究与发展,2013,50(S2):1-15. 被引量:70
  • 3邓红艳,武芳,翟仁健,刘薇薇.基于遗传算法的道路网综合模型[J].武汉大学学报(信息科学版),2006,31(2):164-167. 被引量:20
  • 4Maekaness William A, Ruas Anne, Sarjakoski L Tiina. Generalisation of Geographic Information: Cartographic Modelling and Applications. Amsterdam, Netherlands: Elsevier, 2007
  • 5Vangenot Christelle. Multi-representation in spatial database using the MADS conceptual model//Proceedings of the International Cartographic Association Workshop on Generalization and Multi-Scale Representation. Leicester, England, 2004 : 337-342
  • 6Mark David M, Freksa Christian et al. Cognitive models of geographical space. Geographical Information Science, 1999, 13(8) : 747-774
  • 7Peng Hu, Qi Qing-Wen, Liu Zhao-Li. Progress in studies on automated generalization of spatial point cluster. IEEE International Geoscience and Remote Sensing Symposium, 2004, 13(8): 2841 -2844
  • 8Guttman A. R-tree~ A dynamic index structure for spatial search//Proceedings of the ACM SIGMOD International Conference on Management of Data. Boston, US, 1984: 47-57
  • 9Chan Edward P F, Chow Kevin K W. On multi-scale display of geometric objects. Data & Knowledge Engineering, 2002, 40(1) : 91-119
  • 10Oosterom P V. The reactive-tree: A storage structure for a seamless scaleless geographic database//Proeeedings of the Auto-Carto. Baltimore, US, 1991:393-407

共引文献57

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部