期刊文献+

燃气行业热线数据的情感分析

Sentiment Analysis of Hotline Data in Gas Industry
下载PDF
导出
摘要 客服热线的情感分析对企业核心业务的发展具有决策作用,能提升用户的忠诚度。传统的热线情感分析方法采用的是人工记录或随机采样方式,这样不仅耗费人力,而且无法保障准确率,关键在于其不能客观反映客户的情感,从而最终影响企业的业务质量。结合项目背景,针对燃气公司现有的离线音频文件,提出了声学特征和领域情感词典混合算法,并将其应用于客服热线数据的情感分析以及客户情感(负向、非负向)的识别中;最后,通过召回率、准确率和精确率衡量了算法性能。实验选取1500个音频文件作为数据集,其中负向和非负向数据集均为750个。实验结果表明,该算法在项目实践中具有较好的识别效果,尤其是与领域情感词典的结合。 Sentiment analysis of customer service hotline plays a decisive role in the development of enterprise core businesses,and can enhance customers’loyalty.Traditional hotline emotional analysis methods use the ways of manual recording or random sampling,which not only consume manpower but also can’t guarantee accuracy,and the main problem is it cannot reflect customer’s emotion objectively,and ultimately affects the quality of service enterprises.Accor-ding to the background of the project and the existing offline audio files of Gas Company,hybrid algorithm of acoustic features and domain sentiment lexicon was proposed,which is used in the data analysis of customer service hotline and identifying customer sentiment(negative,non-negative).The experimental results show that the algorithm has an efficient recognition effect on the project practice,especially the combination of field of the sentiment lexicon.
作者 朱虎超 虞慧群 范贵生 邓存彬 ZHU Hu-chao;YU Hui-qun;FAN Gui-sheng;DENG Cun-bin(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《计算机科学》 CSCD 北大核心 2018年第9期248-252,共5页 Computer Science
关键词 情感分析 情感词典 声学特征 客服热线 Sentiment analysis Sentiment lexicon Acoustic features Customer service hotline
  • 相关文献

参考文献3

二级参考文献116

  • 1董振东.语义关系的表达和知识系统的建造[J].语言文字应用,1998(3):79-85. 被引量:59
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3HATZIV ASSILOGLOU V, MCKEOWN K R. Predicting the semantic orientation of adjectives[CJ IIProceedings of the Eighth Conference on European Chapter of the Associ?ation for Computational Linguistics. Madrid; Association for Computational Linguistics, 1997;174-181.
  • 4WIEBEJ M. Learning subjective adjectives from corpora[CJIIProceedings of the National Conference on Artifi?cial Intelligence. Austin; AAAl Press, 2000;735-740.
  • 5RILOFF E, WIEBEJ M, WILSON T. Leaming subjec?tive nouns using extraction pattern bootstrapping[CJ I I Proceedings of the Seventh Conference on Natural Lan?guage Leaming at HLT-NAACL 2003. Edmonton, Cana?da; Association for Computational Linguistics, 2003; 25- 32.
  • 6BARONI M, VEGNADUZZO S. Identifying subjective adjectives through Web-based mutual information[CJ I I Proceedings of KONVENS 2004. Vienna; University of Vienna, 2004;17-24.
  • 7MOILANEN K, PULMAN S. The good, the bad, and the unknown; morphosyllabic sentiment tagging of unseen words[C] II Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies; Short Papers. Stroudsburg; Asso?ciation for Computational Linguistics, 2008; 109 -112.
  • 8TURNEY P, LITTMAN M L. Measuring praise and criti?cism; inference of semantic orientation from association[J]. ACM Trans Information Systems, 2003, 21 ( 4 ) ; 315-346.
  • 9YANG A M, LINJ H, ZHOU Y M, et al. Research on building a Chinese sentiment lexicon based on SO-PMI[J]. Applied Mechanics and Materials, 2013, 263: 1688- 1693.
  • 10READJ. Recognising affect in text using pointwise-mutu?al information[DJ. Brighton; University of Sussex, UK, 2004.

共引文献268

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部