期刊文献+

基于相空间重构的FOA-GLSSVM深基坑变形预测模型研究 被引量:12

Research on Deformation Prediction Model of FOA-GLSSVM Deep Foundation Pit Based on Phase Space Reconstruction
下载PDF
导出
摘要 针对LSSVM模型参数选择的随机性与单一变量序列高维度重构参数选择的困难性,将相空间重构理论、果蝇优化算法引入LSSVM模型中,建立基于相空间重构的FOA-GLSSVM变形预测模型。为了验证提出模型的有效性与可靠性,结合具体工程实例与GLSSVM、支持向量机模型及最小二乘支持向量机模型进行对比研究。结果表明,提出的模型精度更好、稳定性更强。 This study is concerned with the difficulty of parameter selection in the LSSVM model and the selection of parameters for high dimensional reconstruction of single variable sequences.To this end,we introduce the phase space reconstruction theory,and fruit fly algorithm into the LSSVM model.The deformation prediction model of phase space reconstruction based on FOA-GLSSVM is established.In order to validate the effectiveness and reliability of the proposed model,we compare practical examples and the GLSSVM model,least square support vector machine model and support vector machine model.The experimental results show that the proposed model is more accurate and stable.
作者 谢洋洋 吴大鹏 付超 周杰 史益军 XIE Yangyang;WU Dapeng;FU Chao;ZHOU Jie;SHI Yijun(Geomatics Center of Jiangsu Province,75 West-Beijing Road,Nanjing 210000,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2018年第10期1048-1052,共5页 Journal of Geodesy and Geodynamics
关键词 相空间重构 果蝇算法 最小二乘支持向量机 变形预测 phase space reconstruction fruit fly algorithm least square support vector machine deformation prediction
  • 相关文献

参考文献9

二级参考文献85

共引文献219

同被引文献143

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部