摘要
针对LSSVM模型参数选择的随机性与单一变量序列高维度重构参数选择的困难性,将相空间重构理论、果蝇优化算法引入LSSVM模型中,建立基于相空间重构的FOA-GLSSVM变形预测模型。为了验证提出模型的有效性与可靠性,结合具体工程实例与GLSSVM、支持向量机模型及最小二乘支持向量机模型进行对比研究。结果表明,提出的模型精度更好、稳定性更强。
This study is concerned with the difficulty of parameter selection in the LSSVM model and the selection of parameters for high dimensional reconstruction of single variable sequences.To this end,we introduce the phase space reconstruction theory,and fruit fly algorithm into the LSSVM model.The deformation prediction model of phase space reconstruction based on FOA-GLSSVM is established.In order to validate the effectiveness and reliability of the proposed model,we compare practical examples and the GLSSVM model,least square support vector machine model and support vector machine model.The experimental results show that the proposed model is more accurate and stable.
作者
谢洋洋
吴大鹏
付超
周杰
史益军
XIE Yangyang;WU Dapeng;FU Chao;ZHOU Jie;SHI Yijun(Geomatics Center of Jiangsu Province,75 West-Beijing Road,Nanjing 210000,China)
出处
《大地测量与地球动力学》
CSCD
北大核心
2018年第10期1048-1052,共5页
Journal of Geodesy and Geodynamics
关键词
相空间重构
果蝇算法
最小二乘支持向量机
变形预测
phase space reconstruction
fruit fly algorithm
least square support vector machine
deformation prediction