期刊文献+

L-Flou集范畴及其层表示

Category of L-Flou Sets and Its Sheaves Representation
下载PDF
导出
摘要 用模糊集的方法和原理,给出L-flou集合范畴Set(fL)的概念,并证明L-fuzzy集合范畴Set(L)与范畴Set(fL)的同构关系.根据范畴Set(L)与赋予层结构的集合范畴SetL(S H)的同构关系,得到范畴Set(fL)同构于范畴Set_L(S H). Using the method and principle of fuzzy sets,we gave the concept of category Set(f■)of■-f lou sets,and proved that the category Set(■)of■-fuzzy sets was isomorphic to the category Set(f■).According to the isomorphism relationship between the category Set(■)and the lifting category Set■(S H)of sheaf structures on the sets category,we obtained the cat egory Set(f■)was isomorphic to the category S et■(■).
作者 周鑫 刘静 汤建钢 ZHOU Xin;LIU Jing;TANG Jiangang(School of Mathematics and Statistics,Yili Normal University,Yining 835000,Xinjiang Uygur Autonomous Region,China;School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China;Department ofFoundation,Yili Vocational and Technical Collegge,Yining 835000,Xinjiang Uygur Autonomous Region,China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第5期1053-1057,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金面上基金(批准号:1177010596) 新疆维吾尔自治区重点学科开放课题项目(批准号:XJZDXK-M2017015)
关键词 L-FUZZY集 L-flou集 范畴 同构 L-fuzzy set ■-flou set category shea■ isomophism
  • 相关文献

参考文献4

二级参考文献30

  • 1汤建钢.L-fuzzy群范畴中的乘积运算[J].模糊系统与数学,1993,7(1):62-70. 被引量:31
  • 2Zadeh L.A. Fuzzy sets[J]. Inf Control, 1965, 8: 338-353.
  • 3Goguen J A. L-fuzzy sets[J]. J Math Anal Appl, 1967, 18: 145-174.
  • 4Negoita G.V, Ralescu D.A. Representation theorems for fuzzy concepts[J]. Kybernetes, 1975, 4: 169-174.
  • 5Pitts A M. Fuzzy sets do not form a topos[J]. Fuzzy Sets and Systems, 1982(8): 101-104.
  • 6Fourman M P, Scott D S. Sheaves and logic, in: Fourman M.P., Mulvey C.J., Scott D.S.(Eds.), Applications of Sheaves, Lecture Notes in Mathematics, 753, Springer, Berlin, Heidelberg, New York, 1979, 302-401.
  • 7Mac Lane S. Categories for the Working Mathematician[M]. Springer,Berlin-Heidelberg-New York,1972.
  • 8Admek J, Herrlich H, Strecker G E. Abstract and Concrete Categories[M]. John Wiley &: Sons, New York, 1990.
  • 9Bell J L. Boolean-Valued Models and Independence Proofs in Set Theory[M]. Oxford University Press, 1977.
  • 10Cignoli R L O, D' Ottaviano I M L, Mundici D. Algebraic foundations of many-valued reasoning[J]. Kluwer Academic Publishers, Boston, 2000.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部