摘要
设{X,X_n,n≥1}是同分布的负超可加相依(NSD)序列,满足X为α重尾的.利用NSD序列的矩不等式及正则变化函数的性质证明依概率1有lim sup n→∞(n∑i=1 X_i/B(n)1/loglogn=e^(1/a),其中B(x)是指数为1/α的正则变化函数,并获得了一系列等价条件.
Let{X,X n,n≥1}be an identically distributed negatively superadditive dependent(NSD)sequence with X satisfying heavy-tailed distribution with characteristic exponentα.By using the moment inequalities for NSD sequence and the properties of the regularly varying functions,we proved that,with probability 1,lim sup n→∞∑n i=1 X i B(n)1[]loglog n=e 1/α,where B(x)is a regularly varying fu nction with characteristic exponent 1/α.And a series of equivalent condition s were obtained.
作者
黄辉
陆冬梅
胡涛
HUANG Hui;LU Dongmei;HU Tao(College of Optical and Electronical Information,Changchun Univers ity ofScience and Technology,Changchun 130022,China;School of Mathematical Science,Capital Normal University,Beijing 100048,China)
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2018年第5期1113-1118,共6页
Journal of Jilin University:Science Edition
基金
吉林省自然科学基金(批准号:20170101061JC)
首都师范大学科技创新服务能力建设基本科研业务费(批准号:025185305000/204)
关键词
NSD序列
Chover重对数律
正则变化函数
negatively superadditive dependent(NSD)sequence
Ch over’s law of iterated logarithm
regularly varying function