期刊文献+

基于Hadoop平台的大数据图像分类机制 被引量:7

Large Data Image Classification Mechanism Based on Hadoop Platform
下载PDF
导出
摘要 针对大数据图像分类耗时长、实时性差等问题,利用云计算技术的优点,以获得理想的大数据图像分类结果为目标,提出一种基于Hadoop平台的大数据图像分类机制.首先收集大量的图像,构建图像数据库,并提取图像分类的有效特征;然后基于Hadoop平台,采用Map函数对大数据图像分类问题进行细分,用多节点并行、分布式地对子问题进行图像分类求解,得到相应的图像分类结果;最后利用Reduce函数对子问题的图像分类结果进行组合,并用VC++6.0编程实现大数据图像分类的仿真模拟测试.测试结果表明,该分类机制较好地克服了当前图像分类机制存在的弊端,大幅度缩短了图像分类的时间,分类速度可适应大数据图像分类的在线要求,且图像分类的整体效果明显优于当前其他图像分类机制. Aiming at the problem of long time-consuming and poor real-time of large data images classification,using the advantages of cloud computing technology to obtain the ideal classification results of large data images,we proposed a large data image classification mechanism based on Hadoop platform.Firstly,a large number of images were collected,the image database was constructed,and the effective features of the image classification wereextracted.Secondly,based on the Hadoop platform,the Map function was used tosubdivide the large data image classification problems,and subproblems were classified and solved by multiple nodes parallel and distributed,and the corresponding image classification results were obtained.Finally,the Reduce function wasused to combine image classification results of subproblems,and the simulation test of large data image classification was realizedby using VC++6.0 programming.Test results show that the proposed classification mechanism can overcome the drawbacks of current image classification mechanism,greatly shorten the time of image classification,and the classification speed can adapt to online requirements of large data image classification,and the overall effect of image classification is obviously superior to the other image classification mechanisms.
作者 张睿萍 马宗梅 ZHANG Ruiping;MA Zongmei(Department of Computer Science and Technology,Zhongyuan University of Technology,Zhengzhou 450007,China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第5期1206-1212,共7页 Journal of Jilin University:Science Edition
基金 河南省科技厅项目(批准号:162102210248)
关键词 图像分类机制 特征库 实时性 分类节点 特征匹配 image classification mechanism feature database real-time classification node feature matching
  • 相关文献

参考文献14

二级参考文献196

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 2黎俊锋,朱锋峰.基于样本密度的FCM改进算法[J].科学技术与工程,2007,7(4):636-638. 被引量:12
  • 3叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 4袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 5Rovithakis G A. Robust Neural Adaptive Stabilization of Unknown Systems with Measurement Noise [J].Systerms. Man, and Cybernetics, Part B: Cybernetics, 2002, 29(3) ; 453-459.
  • 6Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos. In: Proceedings of the 9th IEEE International Conference. Nice, France: IEEE, 2003. 1470-1477.
  • 7Csurka G, Dance C R, Fan L X, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proceed- ings of the 2004 ECCV International Workshop on Statisti- cal Learning in Computer Vision. Grenoble, France: ECCV, 2004. 1-22.
  • 8Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene cat- egories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2169-2178.
  • 9Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyra- mid matching using sparse coding for image classification. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1794-1801.
  • 10Wang J J, Yang J C, Yu K, Lv F J, Huang T S, Gong Y H. Locality-constrained linear coding for image classification. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3360-3367.

共引文献87

同被引文献65

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部