期刊文献+

对偶数环导出范畴的Recollements

Recollements of Derived Categories of Rings of Dual Numbers
下载PDF
导出
摘要 设A,A_1和A_2是环.证明若环A的上有界导出范畴D^-(A)允许有关于环A_1和A_2的上有界导出范畴D^-(A_1)和D^-(A_2)的recollement,则A的对偶数环A[ε]的上有界导出范畴D^-(A[ε])允许有关于A_1的对偶数环的上有界导出范畴D^-(A_1[ε])和A_2的对偶数环的上有界导出范畴D^-(A_2[ε])的recollement. Let A,A 1 and A 2 be rings.It is proved that,if the upper bounded derived module category D^-(A-Mod)admits a recollement relative to D^-(A 1-Mod)and D^-(A 2-Mod),then D^-(A[ε]-Mod)admits a recollement relative to D^-(A 1[ε]-Mod)and D^-(A 2[ε]-Mod),where A[ε]is the ring of dual number of ring A.
作者 刘宏锦 陈清华 LIU Hongjin;CHEN Qinghua(School of Information Engineering,Longyan University,Longyan 364012,China;College of Mathematics and Computer Science,Fujian Normal University,Fuzhou 350117,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期676-679,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(11471269 11601214) 福建省自然科学基金(2016J01002) 福建省教育厅重点项目(JZ160427)
关键词 对偶数环 导出范畴 recollements dual numbers rings derived categories recollements
  • 相关文献

参考文献2

二级参考文献34

  • 1杜先能.代数的导出等价[J].中国科学(A辑),1996,26(11):1002-1008. 被引量:2
  • 2Morita, K., Duality of modules and its application to the theory of rings with minimax condition, Sci. Rep. Tokyo Kyoiku Daigaku, 1958, A6: 85-142.
  • 3Fuller, K.R., Duality and equivalence, J. Algebra, 1974, 29: 528-550.
  • 4Menini, C., Orsatti, A., Representable equivalences between categories of modules and applications, Rud. Sere. Mat. Univ. Padova, 1989, 82: 203-231.
  • 5Sato, M., Fuller's theorem on equivalences, J. Algebra, 1987, 52: 274-284.
  • 6Sato, M., On equivalences between module subcategories, J. Algebra, 1979, 59: 412-420.
  • 7Azumaya, G., Some aspects of Fuller's theorem, in: Module Theory (eds. by Faith C, Wiegend S). LNM 700, Berlin-Heidelberg-New York: Springer-verlag, 1997, 34-45.
  • 8Brenner, S., Butler, M.C.R., Generalizations of the Benstein-Gelfand-Gelfand reflection functors in: Proc. International Con. on Representations of algebra. LNM832, Berlin-Heidelberg-New York: Springer- verlag, 1980, 103-169.
  • 9Bongartz, K., Tilted Algebras, LNM903, Berlin-Heidelberg-New York: Springer-Verlag, 1981: 26-38.
  • 10Happel, D., Ringel, C.M., Tilted algebras, Trans. Amer. Math. Soc., 1982, 274: 339-443.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部