期刊文献+

基于快速最小距离树的肝脏图像非刚性配准 被引量:3

Nonrigid Registration Based on Minimum Spanning Tree in Liver Image
下载PDF
导出
摘要 为精确诊疗肝脏疾病,针对CT肝脏图像中呈现出与相邻器官灰度值相似、边界不清晰,仅靠灰度水平法难获得理想的分割结果的问题,采用快速最小距离树度量多维特征,构造了Renyiα-entropy能量函数,成功完成了atlas和待分割图像之间的非刚性配准,实现了肝脏的自动精准分割.该方法的分割精度较传统互信息法明显提高,较传统Prim算法分割速度更快. Segmentation of liver from CT image is difficult to obtain ideal results only by grey level method,due to the similarity of its gray scale with the adjacent organs and the unclear boundaries.To diagnose and treat liver illness accurately,Renyiα-entropy energy function was constructed,which employed minimum spanning tree to measure multidimensional features.Nonrigid registration between the atlas and unsegmented image was thus successfully completed and automatic liver segmentation was realized.The segmentation accuracy of this method is significantly improved compared with the conventional mutual information method,and the speed is faster than traditional Prim′s algorithm.
作者 陆雪松 刘坤 谢勤岚 Lu Xuesong;Liu Kun;Xie Qinlan(College of Biomedical Engineering,South-Central University for Nationalities,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 2018年第3期48-52,67,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61002046) 湖北省自然科学基金资助项目(2016CFB489)
关键词 肝脏分割 非刚性配准 最小距离树 联合Renyiα-entropy liver segmentation nonrigid registration minimum spanning tree joint Renyiα-entropy
  • 相关文献

参考文献7

二级参考文献66

  • 1Brown L G.A survey of image registration techniques[J].ACMComputing Surveys (CSUR),1992,24(4):325-376.
  • 2田捷,戴晓倩,杨 飞.医学成像与医学图像处理教程[M].北京:清华大学出版社,2013.152-229.
  • 3Wein W,Brunke S,Khamene A,etal.Automatic ct-ultrasound registration for diagnostic imaging and image-guided intervention[J].Medical Image Analysis,2008,12 (5):577-585.
  • 4Rueckert D,Sonoda L I,Hayes C,etal.Nonrigid registration using free-form deformations:application to breast MR images[J].IEEE Transactions on Medical Imaging,1999,18(8):712-721.
  • 5Roche A,Pennec X,Malandain G,et al.Rigid registration of 3-d ultrasound with MR images:a new approach combining intensity and gradient information[J].IEEE Transactions on Medical Imaging,2001,20(10):1038-1049.
  • 6Tanner C,Karssemeijer N,Székely G.Deformation models for registering MR and 3d ultrasound breast images[C].IEEE International Symposium on Biomedical Imaging:From Nano to Macro,2011.582-585.
  • 7Holden M.A review of geometric transformations for nonrigid body registration[J].IEEE Transactions on Medical Imaging,2008,27(1):111-128.
  • 8Pluim J P W,Maintz J B A,Viergever M A.Mutual-information-based registration of medical images:a survey[J].IEEE Transactions on Medical Imaging,2003,22 (8):986-1004.
  • 9Zou X L,Navon M,Berger M,et al.Numerical experience with limited-memory quasi-newton and truncated newton methods[J].SIAM Journal on Optimization,1993,3(3):582-608.
  • 10Mattes D,Haynor D R,Vesselle H,et al.Pet-ct image registration in the chest using free-form deformations[J].IEEE Transactions on Medical Imaging,2003,22 (1):120-128.

共引文献22

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部