摘要
根据东莞电网的历史负荷数据,分析该地区电力负荷的特征,综合分析天气、温度、日期等因素对电力负荷预测的影响.针对负荷具有一定的客观规律,但又具有很大的随机性和不确定性,提出了一种新型基于径向基函数的自适应神经模糊推理的方法进行短期负荷预测.用MATLAB编制电力系统短期负荷预测程序,并绘制预测结果曲线.结果表明基于RBF自适应神经模糊推理的预测精度是令人满意的,验证了本方法的有效性和实用性.
According to the historical load data of Dongguan grid,power load characteristic in this area is analyzed and the load forecasting influence factors such as the date type,temperature,weather conditions are also analyzed.In view of the load has a certain objective laws,it also has a lot of randomness and uncertainty,a neural fuzzy inference to carry on short-term load forecasting based on RBF is proposed.The program that carries on short-term power system load forecasting is designed in MATLAB,forecasting result curves are drawn.The results indicate that the RBF adaptive neural fuzzy inference of the forecast accuracy is satisfied,so the given method is effective and practical.
作者
王晓侃
王琼
Wang Xiaokan;Wang Qiong(School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China;Henan Mechanical and Electrical Vocational College,Xinzheng 451191,China)
出处
《中南民族大学学报(自然科学版)》
CAS
2018年第3期112-115,共4页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家留学基金委项目(20175097)
河南省科技攻关计划项目(172102210124)
河南省高等学校青年骨干教师培养计划项目(2016GGJS-287)