期刊文献+

扩散形态算子在图像比较中的应用 被引量:1

Application of Diffusion Morphology Operators in Image Comparisons
下载PDF
导出
摘要 将Laplacian特征映射和扩散映射的方法应用于图像数据,通过对图像热核及扩散核相关问题的研究,提出了建立扩散形态算子及运用于图像相似性比较问题的基本框架,证明了Pyt'ev形态分析理论中的投影算子及形态相关系数是扩散形态算子及扩散形态相关系数在马赛克图像模式下的特殊情形;与此同时,还对相关算法的具体实现方法和参数选择方式进行了适当改进,使得在图像比较中的相关数据实验结果得到一定的改善. Laplacian eigenmaps and diffusion maps are applied to image data.Based on the research on the related problems of heat kernel and diffusion kernel of image,the basic framework of establishing diffusion morphological operators and comparison of image similarity is proposed.It is proved that projection operator and morphological correlation coefficient in Pyt′ev morphological analysis theory are the special cases of diffusion morphological operator and diffusion morphological correlation coefficient in Mosaic image mode.At the same time,appropriate improvement for the algorithm implementation and parameter selection is made,so that the experimental results of the related data in the image comparison are improved.
作者 段汕 张晔 张彬彬 Duan Shan;Zhang Ye;Zhang Binbin(College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 2018年第3期150-155,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61374085 11301552)
关键词 热核 扩散形态算子 扩散形态相关系数 heat kernel diffusion morphological operator diffusion morphological correlation coefficient
  • 相关文献

参考文献1

二级参考文献13

  • 1肖刚,刘三阳,尹小艳.微分流形上的最优化算法[J].西安电子科技大学学报,2007,34(3):472-475. 被引量:7
  • 2Partridge M, Calyo R. Fast Dimensionality Reduction and Simple PCA[J]. Intelligent Data Analysis, 1997, 2(3) : 292- 298.
  • 3Hyvrinen A. Survey on Independent Component Analysis[J]. Neural Computing Surveys, 1999, 2(4): 94-128.
  • 4Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000(290): 2319-2323.
  • 5Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000(290): 2323-2326.
  • 6Belldn M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 7Zhang Zhenyue, Zha Hongyuan. Priciple Manifolds and Nonlinear Dimensionality Reduction Via Local Tangent Space Alignment[J]. SIAM Journal of Scientific Computing, 2005, 26(1):313-338.
  • 8Nadler B, Lafon S, Coifman R R, et al. Diffusion Maps, Spectral Clustering and the Reaction Coordinate of Dynamical Systems [J]. Applied and Computation Harmonic Analysis: Special Issue on Diffusion Maps and Wavelets, 2006, 21(1) : 113-127.
  • 9Coifman R R, Kevrekidis I G, Lafon S, et al. Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stoehastie Systems[J]. Multiseale Model and Simulation, 2008, 7(2) : 842-864.
  • 10Maggioni M, Mhaskar H. Diffusion Polynomial Frames on Metric Measure Spaces [J], Applied and Computation Harmonic Analysis, 2008, 24(3): 329-353.

共引文献6

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部