期刊文献+

基于择多门的QCA自动逻辑综合 被引量:1

QCA automatic logic synthesis based on majority gate
下载PDF
导出
摘要 为了实现三输入布尔函数的自动综合,文章提出了卡诺图八位二进制表达式的概念。对于任意3-feasible布尔函数,它的卡诺图八位二进制表达式范围为00000000-11111111(0~255),以量子元胞自动机(quantum cellular automata,QCA)中的择多门为基础,将40个基本函数按照M(M1,M2,M3)的规则充分搭配,得到的结果范围为0~255,即实现了任意3-feasible布尔函数逻辑功能。输入目标函数F,按照择多门最少、反相器最少、门输入最少的原则编程筛选出能实现F逻辑功能的最优M (M1,M2,M3)组合。仿真结果表明,对于任意的3-feasible函数,最后都可以用不超过4个择多门、2级逻辑层的择多逻辑表达式表示,从而实现了三输入的自动逻辑综合,方便QCA电路的搭建。 The concept of the eight-bit K-maps binary expression is presented in order to realize the automatic synthesis of three-input Boolean functions.For any 3-feasible Boolean function,its eight-bit K-maps binary expression has a range of 00000000-11111111(0-255).Based on the majority gate in quantum cellular automata(QCA),forty primitive functions are fully matched according to the rules of M(M 1,M 2,M 3),and the results are in the range of 0-255.This means that logic function of any 3-feasible Boolean function can be implemented.The optimal combination of M(M 1,M 2,M 3)that can achieve logic function of the objective function F is selected according to the principle of least number of majority gates,least number of inverters and minimum gate input.The simulation results show that for any 3-feasible function,it can be represented by no more than four majority gates and two logic levels.So the three-input automatic logic synthesis could be achieved to facilitate the QCA circuit design.
作者 权宇 邓飞飞 余宸 解光军 吕洪君 QUAN Yu;DENG Feifei;YU Chen;XIE Guangjun;LU Hongjun(School of Electronic Science and Applied Physics,Hefei University of Technology,Hefei 230009,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第9期1201-1206,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61271122)
关键词 三输入 卡诺图八位二进制表达式 量子元胞自动机(QCA) 择多门 40个基本函数 编程 自动逻辑综合 three input eight-bit K-maps binary expression quantum cellular automata(QCA) majority gate forty primitive functions programming automatic logic synthesis
  • 相关文献

参考文献2

二级参考文献40

  • 1Bennett C H,Brassard G.Quantum cryptography:public key distribution and coin tossing[C]//Proceedings of the Interna- tional Conference on Computers,Systems and Signal Process- ing.New York:IEEE,1984:175-179.
  • 2Bennett C H.Quantum cryptography using any two non-or- thpgonal states[J]. Physical Review Letters,1992,68(21);3121-3124.
  • 3Ekert A K.Quantum cryptography based on Bell,s theorem[J].Physical Review Letters,1991,67(6):661-663.
  • 4Marand C,Townsend P D.Quantum key distribution over dis- tances as long as 30 km[J].Opt Lett,995,20:1695-1697.
  • 5Muller A,Zbinden H,Gisin N.Underwater quantum coding[J].Nature,995,378:449.
  • 6Muller A,Zbinden H,Gisin N.Quantum cryptography over 23 km in installed under-lake telecom fibre[J].Europhys Lett,1996,33:335-339.
  • 7Zbinden H,Gautier J D,Gisin N,et al. Interferometry with Faraday mirrors for quantum cryptography[J].Electron Lett,1997,33:586-588.
  • 8Stucki G, Gisin N,Guinnard O,et al.Quantum key distribu- tion over 67 km with a plug Byplay system[J].New Journal of Physics,2002,4:41.
  • 9Gobby C,Yuan Z L,Shields J.Quantum key distribution over 122 km of standard telecom[J].Appl Phys Lett,2004,84:3762.
  • 10Mo Xiaofang,Zhu Kng,Han Zhengfuf et al FaradaywMich- elson system for quantum cryptography[J].Opt Lett,2005,30:2632.

共引文献2

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部