摘要
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored.
In this study, we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB). First, we expressed the real behavior of the HSB based on a seakeeping trial. For this purpose, we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors, while using a special data acquisition technique. Additionally, a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor. Then, a novel 3 degrees of freedom(DoF) parallel mechanism(1T2R) with prismatic actuators is proposed and analyses were performed on its inverse kinematics, velocity, and acceleration.Finally, the inverse dynamic analysis is presented by the principle of virtual work, and the validation of the analytical equations was compared by the ADAMS simulation software package. Additionally, according to the recorded experimental data of the HSB, the feasibility of the proposed novel parallel mechanism motion simulator of the HSB, as well as the necessity of using of the washout filters, was explored.