期刊文献+

Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine 被引量:2

对转垂直轴潮流水轮机数值评估(英文)
下载PDF
导出
摘要 In this study,the performance of a contra rotating vertical-axis tidal-current turbine was investigated.The incompressible unsteady Reynolds-averagedNavier-Stokes(U-RANS)equations were solved via two-dimensional(2D)numerical simulation using ANSYS Fluent computational fluid dynamics(CFD)code.An algorithm known as SIMPLE from the CFD code was used to calculate the pressure-velocity coupling and second-order finite-volume discretization for all the transport equations.The base turbine model was validated using the available experimental data.Three given scenarios for the contra rotating turbine were modeled.The contra rotating turbine performs better in a low tip speed ratio(TSR)than in a high TSR operation.In a high TSR operation,the contra rotating turbine inefficiently operates,surviving to rotate in the chaotic flow distribution.Thus,it is recommended to use contra rotating turbine as a part of new design to increase the performance of a vertical-axis tidal-current turbine with a lower TSR. In this study, the performance of a contra rotating vertical-axis tidal-current turbine was investigated. The incompressible unsteady Reynolds-averaged Navier-Stokes(U-RANS) equations were solved via two-dimensional(2D) numerical simulation using ANSYS Fluent computational fluid dynamics(CFD) code. An algorithm known as SIMPLE from the CFD code was used to calculate the pressure-velocity coupling and second-order finite-volume discretization for all the transport equations. The base turbine model was validated using the available experimental data. Three given scenarios for the contra rotating turbine were modeled. The contra rotating turbine performs better in a low tip speed ratio(TSR) than in a high TSR operation. In a high TSR operation, the contra rotating turbine inefficiently operates, surviving to rotate in the chaotic flow distribution. Thus, it is recommended to use contra rotating turbine as a part of new design to increase the performance of a vertical-axis tidal-current turbine with a lower TSR.
出处 《Journal of Marine Science and Application》 CSCD 2018年第2期208-215,共8页 船舶与海洋工程学报(英文版)
基金 funded by the Directorate General of Resources for Science,Technology and Higher Education,Ministry of Research,Technology Higher Education of Republic Indonesia under a scheme called The Education of Master DegreeLeading to Doctoral Program for Excellent Graduates(PMDSU)undercontract number 135/SP2H/LT/DRPM/IV/2017
关键词 Tidal-current energy Contra rotatingturbine Vertical-axis TURBINE Two-dimensional computational fluid dynamics Performance analysis Tidal-current energy Contra rotating turbine Vertical-axis turbine Two-dimensional computational fluid dynamics Performance analysis
  • 相关文献

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部