期刊文献+

约束广义最大元下向量支付弱Pareto-Nash均衡的存在性

The Existence of Weakly Pareto-Nash Equilibria for Vector Payoff Games under Constraint Game with Generalized Largest Element
下载PDF
导出
摘要 利用广义最大元方法研究向量支付弱Pareto-Nash均衡的存在性,得到了约束广义最大元对策均衡的存在性定理,该定理剔除了具体支付函数,其中偏好也不一定蕴含传递性,广义最大元对策拓宽了均衡存在性的研究内容. In the paper,the generalized-largest-element method is used to study the existence of weakly Pareto-Nash equilibria for vector payoff games.A Nash equilibrium existence theorem of the model is given without concrete payoff function or transitive preference,which generalize Nash equilibrium existence of previous game models.
作者 卢美华 王清玲 左勇华 LU Meihua;WANG Qingling;ZUO Yonghua(School of Science,Jiangxi University of Technology,Nanchang Jiangxi 330022,China;College of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi 330022,China;Graduate School at Shenzhen,Tsinghua University,Shenzhen Guangdong 518055,China)
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2018年第5期531-534,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家社会科学基金(17BJL025) 国家自然科学基金(61563020)资助项目
关键词 广义最大元 向量支付对策 弱Pareto-Nash均衡 generalized largest element vector payoff games weakly Pareto-Nash equilibria
  • 相关文献

参考文献8

二级参考文献88

  • 1林志,俞建.ON WELL-POSEDNESS OF THE MULTIOBJECTIVE GENERALIZED GAME[J].Applied Mathematics(A Journal of Chinese Universities),2004,19(3):327-334. 被引量:5
  • 2俞建.对策论中的本质平衡[J].应用数学学报,1993,16(2):153-157. 被引量:21
  • 3左勇华,刘斌斌.广义最大元对策Nash平衡的存在性[J].江西师范大学学报(自然科学版),2006,30(3):252-255. 被引量:2
  • 4Ansari Q H, Schaible S and Yao J C. The system of generalized vector equilibrium problems with applications. Journal of Global Optimization, 2002, 22: 3-16.
  • 5Lin Z. The study of the system of generalized vector quasi-equilibrium problems. J. Glob. Optim., 2006, 36: 627-635.
  • 6Lin Z and Yu J. The existence of solutions for the system of generalized vector quasi-equilibrium problems. Applied Mathematics Letters, 2005, 18: 415-422.
  • 7Yang H and Yu J. Essential components of the set of weakly Pareto-Nash equilibrium points. Applied Mathematics Letters, 2002, 15: 553-560.
  • 8Lin L J, Cheng S F, Liu X Y, Ansari Q H. On the constrained equilibrium problems with finite families of players. Nonlinear Analysis, 2003, 54: 525-543.
  • 9Aliprantis C D and Border K C. Infinite Dimensional Analysis. Springer-Verlag, Berlin, Heidelberg, 1999.
  • 10Schmeidler D.Equilibrium points in nonatomic games.J.Stat.Phys.,1973,7:295-300.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部