期刊文献+

K-L变换观测矩阵优化算法 被引量:2

K-L transform optimization algorithm for measurement matrix
下载PDF
导出
摘要 观测矩阵的研究在压缩感知中尤为重要,其中观测矩阵的优化是观测矩阵研究中的关键问题之一。根据减小观测矩阵与稀疏矩阵之间的互相关性达到优化观测矩阵的思想,提出了K-L变换观测矩阵优化算法。该算法利用原始信号协方差矩阵的特征向量矩阵对传感矩阵进行变换,从而减小观测矩阵与稀疏矩阵之间的互相关性,进而得到优化后的观测矩阵。仿真结果表明,优化后的观测矩阵重构图像的峰值信噪比值大于未优化观测矩阵重构图像的峰值信噪比值,尤其是在观测数目较少的情况下,用该算法优化后的观测矩阵重构的图像具有较高的精度。 The research of measurement matrix is very important in compressed sensing,and the optimization of measurement matrix is one of the key problems in the study of measurement matrix.Based on the idea of reducing the mutual correlation between measurement matrix and sparse matrix to optimize the measurement matrix,an optimization algorithm of K-L transform measurement matrix is proposed.The algorithm transforms the sensing matrix by using the eigenvector matrix of the original signal covariance matrix,thus,the mutual correlation between measurement matrix and sparse matrix is reduced,then the optimized measurement matrix is obtained.Simulation results show that the peak signalto-noise ratio of the reconstructed image by optimized measurement matrix is greater than the peak signal-to-noise ratio of the reconstructed image by not optimized measurement matrix.Especially in the case of a small number of observations,the reconstructed image with the optimized measurement matrix has high precision.
作者 王海艳 佟岐 连志鹏 汲清波 WANG Haiyan;TONG Qi;LIAN Zhipeng;JI Qingbo(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Beijing Aerospace Launch Technology Research Institute,Beijing 100076,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第19期186-190,215,共6页 Computer Engineering and Applications
基金 黑龙江省自然科学基金(No.F201407) 中央高校基本科研业务费专项资金(No.HEUCFP201769)
关键词 压缩感知 观测矩阵 Karhunen-Loeve(K-L)变换 协方差矩阵 互相关性 Compressed Sensing(CS) measurement matrix Karhunen-Loeve(K-L)transform covariance matrix mutual correlation
  • 相关文献

参考文献5

二级参考文献125

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献784

同被引文献15

引证文献2

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部