期刊文献+

基于改进EKF算法的锂离子电池SOC估算方法 被引量:6

SOC Estimation Method for Lithium Ion Battery Based on Improved EKF Algorithm
下载PDF
导出
摘要 针对锂离子电池在变电流放电过程中荷电状态SOC(state of charge)估算精度的问题,提出了一种基于改进扩展卡尔曼滤波EKF(extended Kalman filter)算法的新估算方法。首先,通过放电实验和混合脉冲功率特性HPPC(hybrid pulsepower characteristic)实验,分析计算了等效电路模型参数;然后,利用该方法获得了该模型参数与放电倍率和SOC之间的关系,提出了一种估算SOC时在线修正开路电压和欧姆内阻的新原理和方法;最后,通过变电流放电的SOC估算结果,验证了该改进算法的可行性与有效性,从而解决了锂离子电池在复杂工况下估算精度不足的问题。 A novel estimation method based on improved extended Kalman filter(EKF)algorithm was proposed,which aimed at the low accuracy problem when estimating the lithium ion battery’state of charge(SOC)in the variable-current discharging process.First,though the discharging and hybrid pulse power characteristic(HPPC)experiments,the parameters of equivalent circuit model were analyzed and calculated.Then,the relationship among model parameters,discharge rate and SOC was obtained,and a novel principle and a novel method for estimating SOC were proposed,which were based on online correcting the open circuit voltage and ohmic resistance.Finally,the feasibility and effectiveness of the improved method were verified by the SOC estimation results in the variable-current discharging process.In this way,the proposed method can solve the low estimation accuracy problem of lithium ion battery under complex working conditions.
作者 张方亮 ZHANG Fangliang(School of Manufacturing Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《电源学报》 CSCD 北大核心 2018年第5期124-129,共6页 Journal of Power Supply
基金 四川省科技支撑计划资助项目"高容量锂电池组管理系统关键技术研究"(2014GZ0078)~~
关键词 锂离子电池 荷电状态 变电流 改进扩展卡尔曼 估算精度 lithiumion battery state of charge(SOC) variable current improved extended Kalman estimation accuracy
  • 相关文献

参考文献7

二级参考文献71

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:198
  • 2裴锋,黄向东,罗玉涛,赵克刚.电动汽车动力电池变流放电特性与荷电状态实时估计[J].中国电机工程学报,2005,25(9):164-168. 被引量:50
  • 3林成涛,仇斌,陈全世.电流输入电动汽车电池等效电路模型的比较[J].机械工程学报,2005,41(12):76-81. 被引量:57
  • 4夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:52
  • 5Zhu C B, Coleman M, Hurley W G. State of charge determination in a lead-acid battery: Combined EMF estimation and ah-balance approach[C]. IEEE Conf on Power Electronics Specialists. Aachen, 2004: 1908- 1914.
  • 6Caumont O, Le Moigne P, Rombaut C, et al. Energy gauge for lead-acid batteries in electric vehicles [J]. IEEE Trans on Energy Conversion, 2000, 15(3):354- 360.
  • 7Sbi P, Bu C G, Zhao Y W. The ANN models for SOC/ BRC estimation of Li-ion battery[C]. IEEE Int Conf Acquisition. Hong Kong, 2005: 560-564.
  • 8Li I H, Wang W Y, Su S F, et al. A merged fuzzy neural network and its applications in battery state-of-charge estimation [ J ]. IEEE Trans on Energy Conversion, 2007, 22(3): 697-708.
  • 9Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs [J]. J of Power Sources, 2004, 134(2) : 277-292.
  • 10Bhangu B S, Bentley P, Stone D A, et al. Nonlinear observers for predicting state-of-charge and state-of- health of lead-acid batteries for hybrid-electric vehicles [J]. IEEE Trans on Vehicular Technology, 2005, 54 (3) : 783-794.

共引文献199

同被引文献56

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部